
Diplomats in Eastern Europe
bitten by a Turla mosquito

ESET, spol. s r.o.
January 2018

Diplomats in Eastern Europe
bitten by a Turla mosquito

ESET, spol. s r.o.
January 2018

Table of Content

1.	O verview	 5

2.	 Why attribute this campaign to the Turla group?	 6

3.	A busing Adobe Flash and Flash-related domains	 7

3.1	 Apparent distribution through adobe.com	 7

3.2	 Compromise hypotheses	 7

➊  Local MitM	 8

➋  Compromised gateway	 8

➌  MitM at the ISP level	 9

➍  BGP hijacking	 9

Wrap-up	 9

3.3	 Data exfiltration via get.adobe.com URLs	 9

4.	A nalysis of the Win32 Backdoor	 12

4.1	 Installer	 12

Crypter	 12

Installation	 13

4.2	 DebugParser (launcher)	 15

4.3	 Commander (main backdoor)	 17

Setup	 18

Encryption	 19

Log	 20

C&C server communications and backdoor commands	 20

5.	A nalysis of the JavaScript backdoor	 23

6.	 Conclusion	 24

7.	B ibliography	 25

8.	 IoCs	 26

8.1	 C&C server URLs	 26

8.2	 Fake adobe URLs	 26

8.3	 Unofficial URLs for legitimate Flash installers	 26

8.4	 Hashes	 27

8.5	 Windows artefacts	 28

Hijacked CLSIDs	 28

Files	 28

8.6	 ESET detection names	 29

Recent samples	 29

Older variants	 29

JavaScript backdoor	 29

List of Figures

Figure 1	 Possible interception points on the path between the potential
victim’s machine and the Adobe servers	 8

Figure 2	 Code performing request to bogus get.adobe.com URL	 10

Figure 3	 Installation report sent to bogus get.adobe.com URL	 10

Figure 4	 Unique ID at the end of the installer	 11

Figure 5	 Code performing request to bogus get.adobe.com URL in the Snake
macOS installer	 11

Figure 6	 Obfuscated function	 12

Figure 7	 Debug strings in the PE loader function	 13

Figure 8	 Files created by the malware in the random child directory of %APPDATA%	 14

Figure 9	 Registry modifications to establish persistence	 14

Figure 10	 Pseudocode of the launcher	 15

Figure 11	 Search the address just after the LoadLibrary call	 15

Figure 12	 Allocated memory layout	 15

Figure 13	 Loader and Backdoor in the same library	 16

Figure 14	 DLL has no EXPORT Address Table in the .reloc section	 17

Figure 15	 Newly-created export Table	 17

Figure 16	 Name of the new export	 18

Figure 17	 Routine patching the export table	 18

Figure 18	 Structure of the log file	 20

Figure 19	 Beginning of the log file	 20

Figure 20	 Structure of the requests to the C&C server – GET request with data
in the id parameter	 21

Figure 21	 Selection of the request	 21

Figure 22	 Structure of the C&C reply packet	 22

List of Tables

Table 1	 Backdoor registry values	 19

Table 2	 Encryption keys and moduli	 19

Table 3	 Description of the backdoor commands	 22

5

Diplomats in Eastern Europe
bitten by a Turla mosquito

1.	O verview
Turla is one of the longest-known state-sponsored cyberespionage groups, with well-known victims
such as the US Department of Defense in 2008. The group owns a large toolset [1] [2] that is generally
divided into several categories: the most advanced malware is only deployed on machines that are
the most interesting to the attackers. Their espionage platform is mainly used against Windows
machines, but also against macOS and Linux machines with various backdoors and a rootkit.

For years, Turla has relied, among other impersonations, on fake Flash installers to compromise
victims. This kind of attack vector does not require highly sophisticated exploits but rather depends
on tricking the user into installing the fake program.

In recent months, we have observed a strange, new behavior, leading to compromise by one of Turla’s
backdoors. Not only is it packaged with the real Flash installer, but it also appears to be downloaded
from adobe.com. From the endpoint’s perspective, the remote IP address belongs to Akamai,
the official Content Delivery Network (CDN) used by Adobe to distribute their legitimate Flash
installer. After digging a bit more, we realized that the fake Flash installers, including the macOS
installer for Turla’s backdoor Snake — whether or not they were downloaded from adobe.com URLs
— were performing a GET request to get.adobe.com URLs to exfiltrate some sensitive information
about the newly compromised machine. Again, according to our telemetry, the IP address was
a legitimate IP address used by Adobe. In this whitepaper, we will explain the different possibilities
that could lead to such malicious behavior. To our knowledge, this malware did not utilize any legitimate
Flash Player updates nor is it associated with any known Adobe product vulnerabilities. We can state
with confidence that Adobe was not compromised. These attackers merely use the Adobe brand
to trick users into downloading the malware.

We also found that the Turla group relied on a web app hosted on Google Apps Script as a Command
and Control (C&C) server for JavaScript-based malware dropped by some versions of the fake Flash
installer. Thus, it is clear they are trying to be as stealthy as possible by hiding in the network traffic
of the targeted organizations.

By looking at our telemetry, we found evidence that Turla installers were exfiltrating information
to get.adobe.com URLs since at least July 2016. The victims are located in territories of the former
USSR. As for Gazer, another malware family developed and distributed by the Turla group and previously
described by ESET [2], the targets are mainly consulates and embassies from different countries
in Eastern Europe or the vicinity. We have also seen a few private companies infected but they do
not seem to be Turla’s main targets. Thus, it seems this campaign is directed against high-value
political organizations. Finally, some of the victims are also infected with other Turla-related
malware such as ComRAT or Gazer.

6

Diplomats in Eastern Europe
bitten by a Turla mosquito

2.	 Why attribute this campaign to the Turla
group?

Before analyzing the weird connections happening over the network, we will explain why we suspect
this campaign is the work of the Turla group.

Firstly, some fake Flash installers in this campaign drop a backdoor known as Mosquito, which some
security companies already detect as Turla malware.

Secondly, some of the C&C servers linked to the dropped backdoors are using, or used, SATCOM
IP addresses previously associated with Turla [3].

Thirdly, this malware shares similarities with other malware families used by the Turla group.
These similarities include the same string obfuscation (string stacking and XOR with 0x55)
and the same API resolution.

These elements allow us to say with confidence that Turla’s operators drove this campaign.

7

Diplomats in Eastern Europe
bitten by a Turla mosquito

3.	A busing Adobe Flash and Flash-related
domains

It is not a new tactic for Turla to rely on fake Flash installers to try to trick the user to install one
of their backdoors. For instance, Kaspersky Lab documented this behavior in 2014 [4]. However,
this is the first time, to our knowledge, that the malicious program is downloaded over HTTP
from legitimate Adobe URLs and IP addresses. Thereby, even the most experienced users could
be deceived.

3.1	 Apparent distribution through adobe.com
Since the beginning of August 2016, we have identified a few attempts to download a Turla installer
from admdownload.adobe.com URLs.

At first glance, we imagined it was the typical trick that consists of setting the host field
of the HTTP request while the TCP socket is established to the real IP of the C&C server. However,
after deeper analysis, we realized that the IP address legitimately belongs to Akamai, a large
CDN provider that Adobe uses to distribute its legitimate Flash installer.

Even if the executable is downloaded from a legitimate URL (e.g.: http://admdownload.adobe.com/
bin/live/flashplayer27_xa_install.exe), the referer field appears to have been tampered
with. We have seen this referer field set to http://get.adobe.com/flashplayer/download/
?installer=Flash_Player, which is not a URL pattern used by Adobe and hence returns
a 404 status code if requested.

It is important to note that all the download attempts we identified in our telemetry were made
through HTTP, not HTTPS. This allows a wide range of attacks in the path from the user’s machine
to Akamai’s servers.

The next section is a review of various possible scenarios that could explain this. Exactly what happened
is still an open question and we would appreciate any feedback if you have more information.

3.2	 Compromise hypotheses
Figure 1 shows the different hypotheses that could explain how a user apparently visiting
the legitimate Adobe website over HTTP might be forced to download Turla-related malware.

8

Diplomats in Eastern Europe
bitten by a Turla mosquito

Tra�c
interception

Potential
target

Local man-in-
the-middle attack

1

Compromised
gateway

2 ISP modifies
tra�c

3

Adobe site somehow
compromised

5

BGP
hijacking

4

	 Figure 1	 Possible interception points on the path between the potential victim’s
machine and the Adobe servers

We quickly discarded the hypothesis of a rogue DNS server, since the IP address corresponds
to the servers used by Adobe to distribute Flash. After discussions with Adobe and from their
investigations, scenario ➎ seems unlikely as the attackers did not compromise the Adobe
Flash Player download website. Thus, these are the hypotheses that remain: ➊ a Man-in-the-
Middle (MitM) attack from an already-compromised machine in the local network, ➋ a compromised
gateway or proxy of the organization, ➌ a MitM attack at the Internet Service Provider (ISP) level
or ➍ a Border Gateway Protocol (BGP) hijack to redirect the traffic to Turla-controlled servers.

➊  Local MitM
Turla operators could use an already-compromised machine in the network of the victim’s
organization to perform a local MitM attack. Using ARP spoofing, they could modify the traffic
on the fly by redirecting the traffic of the targeted machine to a compromised machine. Even though
we are not aware of the presence of such tools in the Turla arsenal, such a tool is not hard to develop,
especially given the technical abilities of this group.

However, we identified many different victims in many different organizations. That means the Turla
group would have had to have compromised at least one other computer in each of those organizations,
and specifically, a computer on the same subnet as a more preferred target.

➋  Compromised gateway
This attack is similar to the previous one but much more interesting for the attackers: they can intercept
the traffic for the whole organization, without the need to do ARP spoofing, as gateways and proxies
typically see all the incoming and outgoing traffic between the organization’s intranet and the internet.
We are not aware of the existence of a Turla tool designed to do this —but their rootkit, called Uroburos,
has packet analysis abilities. It can be installed on servers and used as a proxy to distribute tasks
to infected machines that do not have a public IP address [5]. For a group with the apparent expertise
and resources Turla has available, this Uroburos code could easily be modified to intercept traffic
on the fly and inject malicious payloads or otherwise modify unencrypted content.

9

Diplomats in Eastern Europe
bitten by a Turla mosquito

➌  MitM at the ISP level
If the traffic is not intercepted before exiting an organization’s internal network, it means it is modified
later on the path to the Adobe servers. The ISPs are the main point of access on this path, and ESET
has previously reported on other actors, such as FinFisher, using packet injection at the ISP level
to distribute malware in repackaged installers [6].

All the victims we identified are located in different, former USSR countries and we identified them using
at least four different ISPs, based in these different countries. Thus, this scenario would suggest
that Turla operators would have to be able to monitor traffic in several different separate countries
or links where this data transit.

➍  BGP hijacking
If the traffic is not modified by the ISP and does not reach the Adobe servers, this means it has been
re-routed to another server that is controlled by the Turla operators. This can be done by conducting
a BGP hijacking attack. There are several methods that can be employed.

On one hand, Turla operators could use an Autonomous System (AS) they control to announce
a prefix belonging to adobe.com. Thus, the traffic routing to adobe.com from locations near
the Turla-controlled AS will be misdirected to their server. An example of such malicious activity
was analyzed by RIPE [7]. However, this would be quickly noticed by Adobe or by services performing
BGP monitoring. Moreover, we checked on RIPEstat and did not notice any suspicious route
announcements for the Adobe IP addresses used in this campaign.

On the other hand, the Turla operators could use their AS to announce they have a shorter route
than any other AS might have to the Adobe servers. Thus, the traffic would also go through their routers
and could be intercepted and modified in real time. However, a big part of the traffic to Adobe would
be redirected to the rogue router, so it would be a noisy tactic and the chances are it would have
been noticed at some point since the campaign started, in August 2016 or earlier.

Wrap-up
Of the five scenarios presented in Figure 1, we considered only four, as we are confident Adobe was
not compromised. The BGP hijacking and the MitM attack at the ISP level are far more complex than
the others. Thus, we believe it is more probable the Turla group has a custom tool installed on local
gateways of the impacted organizations, allowing them to intercept and modify the traffic even
before it exits the intranet.

3.3	 Data exfiltration via get.adobe.com URLs
Once the user has downloaded and launched the fake Flash installer, the compromise process
starts. It begins by dropping a Turla backdoor on the machine. This could be Mosquito, a Win32 malware
described in section 4, a malicious JavaScript file communicating with a web app hosted on Google
Apps Script as described in section 5, or an unknown file downloaded from a fake Adobe URL:

http://get.adobe.com/flashplayer/download/update/[x32|x64]

For the last case, as this URL does not exist on Adobe’s server; for the Turla group to be able to send
content through this URL, something must be man-in-the-middling traffic on the path between
the compromised machines and the Adobe servers to provide a response to these requests.

Then, a request is performed exfiltrating information about the newly-compromised machine.
This is a GET request to http://get.adobe.com/stats/AbfFcBebD/q=<base64-encoded data>
with, according to our telemetry, a legitimate Adobe IP address but with a URL pattern that is not used
by Adobe and thus returns. As the request is performed through HTTP, the same MitM scenarios
as discussed in section 3.2 are likely.

10

Diplomats in Eastern Europe
bitten by a Turla mosquito

	 Figure 2	 Code performing request to bogus get.adobe.com URL

The base64-encoded data contain interesting and sensitive information about the victim machine,
so it would be surprising that it would actually be sent to an Adobe server. Figure 3 is an example
of a decoded report. It sends various information such as a unique id (the last 8 bytes of the fake
Flash installer executable, as shown in Figure 4), the username, the list of security products
installed and the ARP table.

ID=<unique_id>
Internal error: 0
Last error :0
Extracted
user=<USERNAME>
AV=<INSTALLED AV SOFTWARE>
ip= 192.168.0.2 <local IP address>

Interface: 192.168.0.2 --- 0x4
	 Internet Address		 Physical Address		 Type
	 192.168.0.1			 <redacted>			 dynamic
	 192.168.0.255			 ff-ff-ff-ff-ff-ff	 static
	 224.0.0.2				 <redacted>			 static
	 224.0.0.22			 <redacted>			 static
	 224.0.0.252			 <redacted>			 static
	 239.255.255.250		 <redacted>			 static
	 255.255.255.255		 ff-ff-ff-ff-ff-ff	 static

	 Figure 3	 Installation report sent to bogus get.adobe.com URL

11

Diplomats in Eastern Europe
bitten by a Turla mosquito

	 Figure 4	 Unique ID at the end of the installer

Interestingly, the installer of Snake for macOS [8], a backdoor associated with Turla, also uses
the exact same URL, as shown in Figure 5. The data sent are a bit different as they only contain
the username and device name, although still encoded in base64. However, this behavior
was not documented by Fox-IT when they published their analysis.

	 Figure 5	 Code performing request to bogus get.adobe.com URL in the Snake
macOS installer

Finally, the fake installer drops or downloads, then runs a legitimate Flash Player application.
The legitimate installer is either embedded in the fake installer or downloaded from the following
Google Drive URL: https://drive.google[.]com/uc?authuser=0&id=0B_LlMiKUOIstM0R
RekVEbnFfaXc&export=download

12

Diplomats in Eastern Europe
bitten by a Turla mosquito

4.	A nalysis of the Win32 Backdoor
In this section, we describe the samples we found in the wild, mainly in 2017. We found evidence
that this campaign has been running for some years, and the 2017 samples are an evolution from
a backdoor in a file conventionally named InstructionerDLL.dll. However, these older samples
were less obfuscated and there was only the backdoor DLL, without the loader found in more recent
samples. Some of these older samples have compilation timestamps that date back to 2009 but
these are likely to have been forged.

4.1	 Installer
The installer generally comes as a fake Flash installer and is bundled with two additional components
later dropped on the disk. As explained above, we identified several users who downloaded this fake
Flash installer from a URL and IP used by Adobe for the distribution of the legitimate Flash installer.
We detailed the different hypotheses that could explain this behavior in the previous section.

Crypter
In recent versions, the installer is always obfuscated with what seems to be a custom crypter.
Figure 6 shows an example of a function obfuscated with this tool.

	 Figure 6	 Obfuscated function

Firstly, the crypter makes heavy use of opaque predicates along with arithmetic operations.
For example, the obfuscated function will compute a number from hardcoded values and then
check if this number is greater than another hardcoded value. Thus, at each execution the control
flow will be the same, but emulation is required to determine which path is correct. Therefore,
the code becomes far more complex to analyze for both malware researchers and automated
algorithms in security software. This may slow down emulation so much that the object won’t
be scanned, due to time constraints – and hence software known or shown to be malicious
(if not obfuscated) won’t be detected.

13

Diplomats in Eastern Europe
bitten by a Turla mosquito

Secondly, after the first layer is de-obfuscated, a call to the Win32 API SetupDiGetClassDevs
(0,0,0,0xFFFFFFFF) is performed, and the crypter then checks whether the return value equals
0xE000021A. This function is generally used to request information about the devices of the system.
However, this specific Flags value (0xFFFFFFFF) is not documented, but according to our tests,
the return value is always 0xE000021A on Windows 7 and Windows 10 machines. We believe
this API call and the following check are used to bypass sandboxes and emulators that do not
implement it correctly.

Thirdly, the real code is divided into several chunks that are decrypted, using a custom function,
and re-ordered at run time to build a PE in memory. It is then executed in-place by the crypter’s
PE loader function. This PE loader contains several debug strings as shown in Figure 7.

	 Figure 7	 Debug strings in the PE loader function

Installation
Once decrypted, the installer searches the %APPDATA% subtree and drops two files in the deepest
folder it finds. When searching for this folder, it avoids any folder that contains AVAST in its name.
It then uses the filename of one of the non-hidden files in this folder, truncated at the extension,
as the base filename for the files it will drop. If all the files in the directory are hidden, or the directory
is empty, it takes the name of a DLL from %WINDIR%\System32. The loader it drops will have a .tlb
extension and the main backdoor a .pdb extension. Interestingly, it does not use WriteFile to drop
these two DLLs. Instead, it creates a file, maps it in memory and calls memmove to copy data.
It is probably designed to avoid some sandboxes and security products hooks on WriteFile.

We have also seen older variants of the installer dropping only one file, with the .tlb extension.
In that case, the same file contains both loader and backdoor functions. DllMain chooses which
code to execute.

It writes a simple and unencrypted log file in %APPDATA%\kb6867.bin. The full log file is created
in the same directory as the two DLLs and has the .tnl extension.

14

Diplomats in Eastern Europe
bitten by a Turla mosquito

	 Figure 8	 Files created by the malware in the random child directory of %APPDATA%

Then, it establishes persistence by using either a Run registry key or COM hijacking [9]. If the antivirus
display name, retrieved using Windows Management Instrumentation (WMI), is “Total Security”,
it adds rundll32.exe [backdoor_path], StartRoutine in HKCU\Software\Run\auto_update.

Otherwise, it will replace the registry entry under HKCR\CLSID\{d9144dcd-e998-4eca-ab
6a-dcd83ccba16d}\InprocServer32 or HKCR\CLSID\{08244ee6-92f0-47f2-9fc9-929ba
a2e7235}\InprocServer32 with the path to the loader. These CLSIDs correspond respectively
to EhStorShell.dll and to ntshrui.dll. These DLLs are launched legitimately by a lot of processes,
including explorer.exe, the main windows GUI. Thus, the loader will be called each time
explorer.exe is started. Finally, it adds an entry in the registry to store the path to the original
hijacked DLL and to the main backdoor, as shown in Figure 9.

// Path to the loader
	 HKCR\CLSID\{d9144dcd-e998-4eca-ab6a-dcd83ccba16d}\
	 InprocServer32
	 > C:\Users\Administrator\AppData\Roaming\Adobe\Acrobat\9.0\
	 AdobeSysFnt09.tlb

// the name of the above replaced dll
	 HKCU\Software\Microsoft\Windows\OneDriveUpdate explorer.exe
	 > %SystemRoot%\system32\EhStorShell.dll;
	 {d9144dcd-e998-4eca-ab6a-dcd83ccba16d};new

// Path to the main backdoor
	 HKCU\Software\Microsoft\Windows\OneDriveUpdate (Default)
	 > C:\Users\Administrator\AppData\Roaming\Adobe\Acrobat\
	 9.0\AdobeSysFnt09.pdb

	 Figure 9	 Registry modifications to establish persistence

Other CLSIDs are hardcoded in the binary but we have not seen any use made of them. The full list
is available in the IoCs section.

As explained in the previous section, the installer sends some information — such as the unique
id of the sample, the username or the ARP table — to a URL at an Adobe domain, get.adobe.com.
It will also launch a real Adobe Flash installer, which is either downloaded from Google Drive
or embedded in the fake installer.

Before launching the main backdoor, the installer creates an administrative account HelpAssistant
(or HelpAsistant in some samples) with the password sysQ!123. Also, the LocalAccountToken
FilterPolicy is set to 1, allowing remote administrative actions. We believe this account name
was used to remain stealthy as this is the name used when a legitimate Remote Assistance session
is run [10].

15

Diplomats in Eastern Europe
bitten by a Turla mosquito

4.2	 DebugParser (launcher)
The launcher, named DebugParser.dll internally, is called when the hijacked COM object
is loaded. It is responsible for launching the main backdoor and for loading the hijacked COM object.
The simplified pseudo-code of this component is provided in Figure 10.

if (GetModuleFileNameW != “explorer.exe”) {
	 CreateMutexW(“slma”)
	 CreateProcess(“rundll32 (from HKCU\Software\Microsoft\Windows\
	 OneDriveUpdate @=) StartRoutine”)
}
//Load hijacked library
LoadLibraryW (from HKCU\Software\Microsoft\Windows\OneDriveUpdate
“explorer.exe”=)

	 Figure 10	 Pseudocode of the launcher

However, it uses some tricks to load the hijacked library and to return to the correct address.
The process is described below:

1.	 Retrieve the original return address after the legitimate call to LoadLibrary. At the beginning
of DllMain, it stores the value of the ESP register. Then it checks for FF 15 (a CALL opcode)
at ESP - 6. If it is present, the register holds the original return address.

	 Figure 11	 Search the address just after the LoadLibrary call

2.	 Allocate RWX memory containing the following values:

3.	 Jump to the hook function by modifying the return address of DllMain.

0 4

Pointer to HookLibrary
loader

Original return addr

8

Hinst DLL

12

Pointer to FreeLibrary 0xCC

16 24 48

Hook
function

	 Figure 12	 Allocated memory layout

16

Diplomats in Eastern Europe
bitten by a Turla mosquito

4.	 In the hook function:

	 a.	 Call a function that is responsible for loading ntshrui.dll (or any other hijacked library)

	 b.	 Call FreeLibrary on the DebugParser.dll (backdoor loader) handle

	 c.	 Jump to the original return address before the hook.

Because the original DLL is loaded, the user is unlikely to notice that the backdoor was launched
at the same time.

In the case of older variants, with the loader and backdoor functions in one file, the DllMain chooses
which code to execute, as shown in Figure 13.

	 Figure 13	 Loader and Backdoor in the same library

17

Diplomats in Eastern Europe
bitten by a Turla mosquito

4.3	 Commander (main backdoor)
The main backdoor of this campaign, called CommanderDLL by its authors, is launched either
by the loader described above, or directly at startup if the chosen persistence mechanism is the Run
registry entry. In both cases, this library’s StartRoutine export is called while, as shown in Figure 14,
this export is not present in the DLL’s export table.

	 Figure 14	 DLL has no EXPORT Address Table in the .reloc section

In the DllMain function, an export table is built in order to expose this export:

1.	 It creates an IMAGE_EXPORT_DIRECTORY structure with StartRoutine as the name
of its only export

2.	 It copies this structure just after the relocation section, located at the end of the PE’s
in-memory image

3.	 It changes the PE header field containing the Relative Virtual Address (RVA) of the export
table to the address of the newly-created export table

With these fix-ups, the memory-mapped library has an export called StartRoutine, as shown
in Figure 15 and Figure 16. Figure 17 is a screenshot from the Hex-Rays decompiler showing the code
for the whole process to add this export.

	 Figure 15	 Newly-created export Table

18

Diplomats in Eastern Europe
bitten by a Turla mosquito

	 Figure 16	 Name of the new export

	 Figure 17	 Routine patching the export table

Setup
Firstly, the CommanderDLL module deletes the dropper (the fake Flash installer) file. The path
is received from the dropper via a named pipe called \\.\pipe\namedpipe. Then, in a new thread,
it creates a second named pipe, \\.\pipe\ms32loc, and waits until another process connects
to this pipe, at which point the program exits.

Secondly, it sets up some internal structures and stores configuration values in the registry.
Table 1 describes the different registry values stored under HKCU\Software\Microsoft\[dllname].

19

Diplomats in Eastern Europe
bitten by a Turla mosquito

	 Table 1	 Backdoor registry values

Key value Description

Flags Contains C&C server URLs

layout MAC address padded with 0x0000

[dllname]tr32 Similar to Flags

[dllname]fgtb Temporary data

[dllname]fga Not seen

All the registry values, except the layout entry, are encrypted using a custom algorithm
that is described in the next section.

Third, an additional C&C server address is downloaded from a document hosted on Google Docs
(https://docs.google[.]com/uc?authuser=0&id=0B_wY-Tu90pbjTDllRENWNkNma0k&export=download).
It is also encrypted using the same algorithm described below.

Encryption
This backdoor relies on a custom encryption algorithm. Each byte of the plaintext is XORed with
a stream generated by a function that looks similar to the Blum Blum Shub algorithm [11]. To encrypt
or decrypt, a key and a modulus are passed to the encryption function.

Different keys and moduli are used in the different samples. Some are hardcoded while others are
generated during execution. Table 2 describes the different keys and moduli used by this malware.

	 Table 2	 Encryption keys and moduli

Name Key
(hexadecimal)

Modulus
(hexadecimal)

Description

Flags 0x3EB13 0x7DFDC101 Registry

fgtb 0x3EB13 0x7DFDC101 Registry

google 0x3EB13 0x7DFDC101 Downloaded C&C server URL

tr32 [offset 0x0] of the data 0x6581E8DD Registry

tnl [offset 0x20] of the log file 0x5DEE0b89 Log file

C&C reply [offset 0x0] of the reply 0x7DFDC101 C&C reply

C&C request payload 0x3EB13 0x7DFDC101 Payload structure
of the C&C request

URL ID structure [offset 0x0] of the GET
id parameter

0x7DFDC101 C&C server request

Cookie [offset 0x0] of the GET
id parameter

0x7DFDC101 C&C server request

POST [offset 0x0] of the GET
id parameter

0x7DFDC101 C&C server request

20

Diplomats in Eastern Europe
bitten by a Turla mosquito

Log
The program maintains a comprehensive log file under the name [dllname].tnl. Interestingly,
it includes the timestamp of each log entry, allowing an easy retrace of the chain of events
that happened on a compromised machine. This could be very helpful for forensic investigators.
It is encrypted using the previously-described algorithm. The key is located at offset 0x20
in the header of the log file and the modulus is always 0x5DEE0B89. Figure 18 describes
the structure of this file.

...

TNL log file

Data

Data

Encrypted

DWORD strmA;

DWORD strmB;

DWORD xor1_strmA;

DWORD xor2_strmA;

DWORD xor3_strmB;

DWORD xor4_strmA;

DWORD strmA_xor_30750789h;

DWORD rand_shift_xor;

DWORD encryption_key;

FILETIME SystemTime;

DWORD type1; //ex:0x5336,0x5337, ...

DWORD type2; //ex:0x734A,0x7344, ...

DWORD data_len;

BYTE data[];

Header

	 Figure 18	 Structure of the log file

	 Figure 19	 Beginning of the log file

C&C server communications and backdoor commands
The backdoor’s main loop is responsible for managing the communication with the C&C server
and executing the commands it sends. At the beginning of each round, it sleeps a random amount
of time – usually around 12 minutes.

The requests to the C&C server always use the same URL scheme: https://[C&C server
domain]/scripts/m/query.php?id=[base64(encrypted data)]. The user-agent is hardcoded
in the samples and cannot be changed:

Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/
41.0.2228.0 Safari/537.36

This is the default value used by Google Chrome 41. The structure of the id parameter is described
in Figure 20.

21

Diplomats in Eastern Europe
bitten by a Turla mosquito

DATA

Header

28 bytes - Unkown

Payload

Encrypted

Key 0x3EB13

Modulus 0x7DFDC101

URL ID

DWORD KeyStart; //modulo is 0x7DFDC101

BYTE ID; //range from 0X85 to 0x89

BYTE some_lenght

BYTE some_string[]; //hardcoded to 4 bytes

BYTES MAC[8]; //padded with 0x0000

DWORD null;

DWORD data_len;

BYTE data[];

BYTE random_junk;

Encrypted
with first

4 bytes

	 Figure 20	 Structure of the requests to the C&C server – GET request with data
in the id parameter

The previous example is the case for which the id GET parameter contains the Data structure.
However, data can also be put inside a cookie (with a null name) or in a POST request.
Figure 21 describes the various possibilities.

In all cases, the encryption key is the first DWORD of the URL id structure. This key, in combination
with the modulus 0x7DFDC101, can decrypt the URL id structure, the POST data and the cookie
value. Then, the payload of the data structure is decrypted.

Data in GET
parameter

Data lenght

REQUEST TO THE C&C

POST GET

Random

Data in cookie

	 Figure 21	 Selection of the request

The initial request contains general information about the compromised machine, such as the result
of the commands ipconfig, set, whoami and tasklist.

Then, the C&C server replies with one of several batches of instructions. The structure of this reply
is described in . The packet is fully encrypted (except the first four bytes), with the same algorithm,
derived from Blum Blum Shub, described in section 4.3 using the first DWORD for the key
and 0x7DFDC101 for the modulus. Each batch of instructions is encrypted separately using
0x3EB13 for the key and 0x7DFDC101 for the modulus.

22

Diplomats in Eastern Europe
bitten by a Turla mosquito

Instruction

C2C reply packet

Header

DWORD encryption_key;

DWORD response_code; //0x28 ok, 0x27 -> do nothing);

DWORD unknown1;

DWORD unknown2;

DWORD next_block_size;

Batch of instructions

DWORD unknown;

DWORD unknown;

DWORD unknown;

...

Header

...

Header

WORD instruction_id // (0x3001 - 0x300B);

DWORD unknown_lenght;

DWORD payload_lenght;

DWORD string_lenght // no trailling zero;

BYTE unicode_string[];

BYTE data bin[];

Payload

Instruction

Each batch is
encrypted separately

Encrypted
with first 4 bytes

	 Figure 22	 Structure of the C&C reply packet

The backdoor can execute certain predefined actions hardcoded in the binary. Table 3 is a summary
of the available commands.

	 Table 3	 Description of the backdoor commands

Command ID Description

0x3001 Download file to the compromised machine. If there is .dll or .exe
in the filename, run it using LoadLibrary or CreateProcess.

0x3002 Launch a process (or load a library if there is .dll in the filename)

0x3003 Delete a file using DeleteFileW.

0x3004 Exfiltrate a file (max size sent = 104,857,600 bytes). The C&C server
can also ask to delete the files and to flush data in the registry Flags.

0x3005 Store data to the registry Flags. The size of data should be ≤ 240 bytes.

0x3006 Execute cmd.exe /c [command]. The result is read using a pipe and sent back to the C&C.

0x3007 Same as 0x3005.

0x3008 Same as 0x3005.

0x3009 Add a C&C server URL.

0x300A Delete a C&C server URL.

0x300B Same as 0x3009.

In some of the samples we have analyzed, the backdoor is also able to launch PowerShell scripts.

23

Diplomats in Eastern Europe
bitten by a Turla mosquito

5.	A nalysis of the JavaScript backdoor
Some of the fake Flash installers deliver two JavaScript backdoors instead of Mosquito, the Win32
backdoor. These files are dropped on the disk in the folder %appdata%\Microsoft\. They are named
google_update_checker.js and local_update_checker.js

The first one contacts a web app hosted on Google Apps Script with the following URL
(https://script.google[.]com/macros/s/AKfycbwF_VS5wHqlHmi4EQoljEtIsjmglLBO
69n_2n_k2KtBqWXLk3w/exec) and expects a base64-encoded reply. Then, it executes the decoded
content using eval. We don’t know what the exact purpose of this additional backdoor is, but
it may be used to download additional malware or to execute malicious JavaScript code directly.
To establish persistence, it adds a Shell value under HKCU\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\

The second JavaScript file reads %programdata%\1.txt and executes its content using
the eval function. To establish persistence, it adds a local_update_check value
in HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

24

Diplomats in Eastern Europe
bitten by a Turla mosquito

6.	 Conclusion
This campaign shows that Turla’s operators have many ideas to trick the user and to hide
their malicious traffic as legitimate. Even an experienced user can be fooled by downloading
a malicious file that is apparently from adobe.com, since the URL and the IP address correspond
to Adobe’s legitimate infrastructure. However, the usage of HTTPs would significantly reduce
the effectiveness of these kinds of attacks, as it is harder to intercept and modify encrypted traffic
on the path between a machine and a remote server. Similarly, a check of the file signature should
quickly raise suspicion, as the files used in this campaign are not signed whereas installers
from Adobe are.

It also shows that Turla is still interested in consulates and embassies located in Eastern Europe
and they put a lot of effort into keeping their remote access to these important sources of information.

For any inquiries, or to make sample submissions related to the subject, contact us at: threatintel@eset.com

mailto:threatintel%40eset.com?subject=Turla%20mosquito

25

Diplomats in Eastern Europe
bitten by a Turla mosquito

7.	Bi bliography
	 1	 ESET Research, “Carbon Paper: Peering into Turla’s second stage backdoor,” ESET, 30 03 2017. [Online].

Available: https://www.welivesecurity.com/2017/03/30/carbon-paper-peering-turlas-second-stage-backdoor/.

	 2	 ESET Research, “Gazing at Gazer – Turla’s new second stage backdoor,” ESET, 08 2017. [Online].
Available: https://www.welivesecurity.com/wp-content/uploads/2017/08/eset-gazer.pdf.

	 3	 AlienVault, “Satellite Turla infrastructure,” 2016. [Online].
Available: https://otx.alienvault.com/indicator/hostname/ebay-global.publicvm.com.

	 4	 Kaspersky, “The Epic Turla Operation,” 2014. [Online].
Available: https://securelist.com/the-epic-turla-operation/65545/.

	 5	 BAE System, “SNAKE CAMPAIGN & CYBER ESPIONAGE TOOLKIT,” 2014. [Online].
Available: http://artemonsecurity.com/snake_whitepaper.pdf.

	 6	 F. Kafka, “New FinFisher surveillance campaigns: Internet providers involved?,” 21 09 2017. [Online].
Available: https://www.welivesecurity.com/2017/09/21/new-finfisher-surveillance-campaigns/.

	 7	 RIPE, “YouTube Hijacking: A RIPE NCC RIS case study,” 17 03 2008. [Online]. Available:
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study.

	 8	 FOX-IT, “Snake: Coming soon in Mac OS X flavour,” 03 05 2017. [Online].
Available: https://blog.fox-it.com/2017/05/03/snake-coming-soon-in-mac-os-x-flavour/.

	 9	 GDATA, “COM Object hijacking: the discreet way of persistence,” 10 2014. [Online]. Available:
https://www.gdatasoftware.com/blog/2014/10/23941-com-object-hijacking-the-discreet-way-of-persistence.

	10	 Microsoft, “HelpAssistant account (installed by using a Remote Assistance session),” 12 05 2014. [Online].
Available: https://technet.microsoft.com/en-us/library/dn745900(v=ws.11).aspx#SEC_HelpAssistant.

	11	 Wikipedia, “Blum Blum Shub,” 13 11 2017. [Online]. Available: https://en.wikipedia.org/wiki/Blum_Blum_Shub.

https://www.welivesecurity.com/2017/03/30/carbon-paper-peering-turlas-second-stage-backdoor/
https://www.welivesecurity.com/wp-content/uploads/2017/08/eset-gazer.pdf
https://otx.alienvault.com/indicator/hostname/ebay-global.publicvm.com
https://securelist.com/the-epic-turla-operation/65545/
http://artemonsecurity.com/snake_whitepaper.pdf
https://www.welivesecurity.com/2017/09/21/new-finfisher-surveillance-campaigns/
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://blog.fox-it.com/2017/05/03/snake-coming-soon-in-mac-os-x-flavour/
https://www.gdatasoftware.com/blog/2014/10/23941-com-object-hijacking-the-discreet-way-of-persistence
https://technet.microsoft.com/en-us/library/dn745900(v=ws.11).aspx#SEC_HelpAssistant
Available: https://en.wikipedia.org/wiki/Blum_Blum_Shub

26

Diplomats in Eastern Europe
bitten by a Turla mosquito

8.	 IoCs

8.1	 C&C server URLs

Year URL

2017 smallcloud.ga

2017 fleetwood.tk

2017 docs.google.com/uc?authuser=0&id=0B_wY-Tu90pbjTDllRENW
NkNma0k&export=download (adstore.twilightparadox.com)

2017 bigpen.ga

2017 https://script.google.com/macros/s/AKfycbxxPPyGP3Z5wgwbs
mXDgaNcQ6DCDf63vih-Te_jKf9SMj8TkTie/exec

2017 https://script.google.com/macros/s/AKfycbwF_VS5wHqlH
mi4EQoljEtIsjmglLBO69n_2n_k2KtBqWXLk3w/exec

2017, 2016,
2015

ebay-global.publicvm.com

2017, 2016,
2015, 2014

psychology-blog.ezua.com

2016 agony.compress.to

2016 gallop.mefound.com

2016 auberdine.etowns.net

2016 skyrim.3d-game.com

2016 officebuild.4irc.com

2016 sendmessage.mooo.com

2016, 2014 robot.wikaba.com

2015 tellmemore.4irc.com

8.2	 Fake adobe URLs
http://get.adobe[.]com/stats/AbfFcBebD/?q=<base64-encoded data>

http://get.adobe[.]com/flashplayer/download/update/x32

http://get.adobe[.]com/flashplayer/download/update/x64

8.3	 Unofficial URLs for legitimate Flash installers
https://drive.google[.]com/uc?authuser=0&id=0B_LlMiKUOIsteEtraEJYM0QxQVE&export=download

https://drive.google[.]com/uc?authuser=0&id=0B_LlMiKUOIstM0RRekVEbnFfaXc&export=download

27

Diplomats in Eastern Europe
bitten by a Turla mosquito

8.4	 Hashes
Component Installer Compilation Year 2017

SHA-256 2A61B4D0A7C5D7DC13F4F1DD5E0E3117036A86638DBAFAEC6AE96DA507FB7624

SHA-1 E0788A0179FD3ECF7BC9E65C1C9F107D8F2C3142

MD5 2E244D33DD8EB70BD83EB38E029D39AC

Component Loader (.tlb) Compilation Year 2017

SHA-256 F6C9AE06DFC9C6898E62087CC7DBF1AC29CBD0A4BCDB12E58E0C467E11AD4F75

SHA-1 F5ABFB972495FDE3D4FB3C825C3BBC437AAB6C3A

MD5 13B29C4840311A7BDB4C0681113598B0

Component Backdoor (.pdb) Compilation Year 2017

SHA-256 E7FD14CA45818044690CA67F201CC8CFB916CCC941A105927FC4C932C72B425D

SHA-1 24925A2E8DE38F2498906F8088CF2A8939E3CFD3

MD5 3C32E13162D884AB66E44902EDDB8EEE

Component Installer Compilation Year 2017

SHA-256 F667680DF596631FBA58754C16C3041FAE12ED6BF25D6068E6981EE68A6C9D0A

SHA-1 CDE4D12EF9F70988C63B66BF019C379D59A0E61F

MD5 0AB62A3E02A036D81A64DAC9E6B53533

Component Loader (.tlb) Compilation Year 2017

SHA-256 26A1A42BC74E14887616F9D6048C17B1B4231466716A6426E7162426E1A08030

SHA-1 BEE79383BCC73CF1E8E938131179223ADB39AC1D

MD5 DFCE6F7D3A992DC2EE7FEDB8DEA58237

Component Backdoor (.pdb) Compilation Year 2017

SHA-256 05254971FE3E1CA448844F8CFCFB2B0DE27E48ABD45EA2A3DF897074A419A3F4

SHA-1 48BCEC5A65401FBE9DF8626A780F831AD55060A1

MD5 137EB9B6EF122857BDE72F78962ED208

Component Installer Compilation Year 2017

SHA-256 FC9961E78890F044C5FC769F74D8440FCECF71E0F72B4D33CE470E920A4A24C3

SHA-1 04FB0667B4A4EB1831BE88958E6127CD7317638A

MD5 3E65A6D5658E6517C59D978DC159057A

Component Backdoor Compilation Year 2017

SHA-256 68C6E9DEA81F082601AE5AFC41870CEA3F71B22BFC19BCFBC61D84786E481CB4

SHA-1 E441CC1547B18BBA76D2A8BD4D0F644AD5388082

MD5 080B2CE7188547C1E9AD1B8089467261

Component Installer (JS backdoor) Compilation Year 2017

SHA-256 B295032919143F5B6B3C87AD22BCF8B55ECC9244AA9F6F88FC28F36F5AA2925E

SHA-1 BA3519E62618B86D10830EF256CCE010014E401A

MD5 CC3ADFE6079C1420A411B72F702E7DC7

Component google_update_checker.js Compilation Year 2017

SHA-256 244896995B6B83F11DF944CCDA41ED9F1F1D811EBF65D75FE4337FD692011886

SHA-1 C51D288469DF9F25E2FB7AC491918B3E579282EA

MD5 110E9BC680C9D5452C23722F42C385B3

28

Diplomats in Eastern Europe
bitten by a Turla mosquito

Component local_update_checker.js Compilation Year 2017

SHA-256 5D0973324B5B9492DDF252B56A9DF13C8953577BDB7450ED165ABBE4BF6E72D8

SHA-1 3DC74671768EB90463C0901570C0AAE24569B573

MD5 905B4E9A2159DAB45724333A0D99238F

Component Installer (Launch a PowerShell
to download an executable
at http://get.adobe[.]com/flashplayer/
download/update/x32)

Compilation Year 2017

SHA-256 B362B235539B762734A1833C7E6C366C1B46474F05DC17B3A631B3BFF95A5EEC

SHA-1 4B5610AC5070A7D53041CC266630028D62935E3F

MD5 DFCA3FC4B7F4C637D7319219FCEC1876

Component Backdoor Compilation Year 2016

SHA-256 B79CDF929D4A340BDD5F29B3AECCD3C65E39540D4529B64E50EBEACD9CDEE5E9

SHA-1 240D3473932E4D74C09FCC241CF6EC175FDCE49D

MD5 B7FD4C5119867539E36E96DE1D07AF6E

Component Old Backdoor Compilation Year 2015

SHA-256 443CD03B37FCA8A5DF1BBAA6320649B441CA50D1C1FCC4F5A7B94B95040C73D1

SHA-1 EC451F32110DE398781E3EDF27354E0425A51A23

MD5 88F24B129E200C4F48852DCBB6E21DAF

8.5	 Windows artefacts

Hijacked CLSIDs
{D9144DCD-E998-4ECA-AB6A-DCD83CCBA16D}
{08244EE6-92F0-47F2-9FC9-929BAA2E7235}
{4E14FBA2-2E22-11D1-9964-00C04FBBB345}
{B5F8350B-0548-48B1-A6EE-88BD00B4A5E7}
{603D3801-BD81-11D0-A3A5-00C04FD706EC}
{F82B4EF1-93A9-4DDE-8015-F7950A1A6E31}
{9207D8C7-E7C8-412E-87F8-2E61171BD291}
{A3B3C46C-05D8-429B-BF66-87068B4CE563}
{0997898B-0713-11D2-A4AA-00C04F8EEB3E}
{603D3801-BD81-11D0-A3A5-00C04FD706EC}
{1299CF18-C4F5-4B6A-BB0F-2299F0398E27}

Files
•	 Three files with the same name but a different extension (.tlb, .pdb and .tnl)

in a folder of %APPDATA%
•	 %APPDATA%\kb6867.bin (simplified log file)

29

Diplomats in Eastern Europe
bitten by a Turla mosquito

8.6	 ESET detection names

Recent samples
Win32/Turla.CQ
Win32/Turla.CP
Win32/Turla.CR
Win32/Turla.CS
Win32/Turla.CT
Win32/Turla.CU
Win32/Turla.CV
Win32/Turla.CW
Win32/Turla.CX

Older variants
Win32/TrojanDownloader.CAM
Win32/TrojanDownloader.DMU

JavaScript backdoor
JS/Agent.NWB
JS/TrojanDownloader.Agent.REG

	_Ref501347879
	_Ref501530104
	_Ref496696972
	_Ref501340264
	_Ref496700169
	_Ref501338065
	_Ref501340726
	_Ref501340936
	_Ref501344999
	_Ref501092130
	_Ref501092127
	_Ref501433647
	_Ref501343696
	_Ref502141872
	_Ref501343955
	_Ref501344008
	_Ref502147589
	_Ref501085976
	_Ref501084219
	_Ref501425422
	_Ref501088445
	_Ref501346017
	_Ref501412888
	_Ref501089733
	_Ref501523274
		Figure 1	Possible interception points on the path between the potential victim’s machine and the Adobe servers
		Figure 2	Code performing request to bogus get.adobe.com URL
		Figure 3	Installation report sent to bogus get.adobe.com URL
		Figure 4	Unique ID at the end of the installer
		Figure 5	Code performing request to bogus get.adobe.com URL in the Snake
macOS installer

		Figure 6	Obfuscated function
		Figure 7	Debug strings in the PE loader function
		Figure 8	Files created by the malware in the random child directory of %APPDATA%
		Figure 9	Registry modifications to establish persistence
		Figure 10	Pseudocode of the launcher
		Figure 11	Search the address just after the LoadLibrary call
		Figure 12	Allocated memory layout
		Figure 13	Loader and Backdoor in the same library
		Figure 14	DLL has no EXPORT Address Table in the .reloc section
		Figure 15	Newly-created export Table
		Figure 16	Name of the new export
		Figure 17	Routine patching the export table
		Figure 18	Structure of the log file
		Figure 19	Beginning of the log file
		Figure 20	Structure of the requests to the C&C server – GET request with data
in the id parameter

		Figure 21	Selection of the request
		Figure 22	Structure of the C&C reply packet
		Table 1	Backdoor registry values
		Table 2	Encryption keys and moduli
		Table 3	Description of the backdoor commands

