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EXECUTIVE SUMMARY

ESET researchers recently described Wslink, a unique and previously undocumented malicious loader
that runs as a server and that features a virtual-machine-based obfuscator. There are no code,
functionality or operational similarities that suggest this is likely to be a tool from a known threat actor;
the complete analysis of the malware can be found here.

In this white paper we describe the structure of the virtual machine used in samples of Wslink and
suggest a possible approach to see through the obfuscation techniques used in the analyzed samples.
We demonstrate our approach on chunks of code of the protected sample. We were not motivated to
fully deobfuscate the code, because we discovered a non-obfuscated sample.

Obfuscation techniques are a kind of software protection intended to make code hard to understand
and hence conceal its objectives; obfuscating virtual machine techniques have become widely misused
forillicit purposes such as obfuscation of malware samples as they hinder both analysis and detection.
The ability to analyze malicious code and subsequently improve our detection capabilities is behind our
motivation to overcome these techniques.

Virtualized Wslink samples do not contain any clear artifacts, such as specific section names, that easily
link it to a known virtualization obfuscator. During our research, we were able to successfully design
and implement a semiautomatic solution capable of significantly facilitating analysis of the underlying
program'’s code. The virtual machine introduced a diverse arsenal of obfuscation techniques, which we
were able to overcome to reveal a part of the deobfuscated malicious code that we describe in this
document. In the last sections of this analysis, we present parts of the code we developed to facilitate
our research.

This white paper also provides an overview of the internal structure of virtual machines in general, and
introduces some important terms and frameworks used in our detailed analysis of the Wslink virtual
machine.

In the past we described the structure of a custom virtual machine, along with our techniques to
devirtualize the machine. That virtual machine contained an interesting anti-disassembly trick,
previously utilized by FinFisher — spyware with extensive spying capabilities, such as live surveillance
through webcams and microphones, keylogging, and exfiltration of files. We additionally presented an
approach for its deobfuscation. You can find more information about that case in this earlier white paper.

OVERVIEW OF VIRTUAL MACHINE STRUCTURES

Before diving into the analysis of Wslink's virtual machine (VM), we provide an overview of the internal
structure of virtual machines in general, describe known approaches to deal with such obfuscation and
introduce some important terms and frameworks used in our detailed analysis of the Wslink VM.

General structure of virtual machines

Virtual machines can be divided into two main categories:

1. System virtual machines — support execution of complete operating systems (e.g., various VMWare
products, VirtualBox)

2. Process virtual machines - execute individual programs in an OS-independent environment (e.g., Java, the
.NET Common Language Runtime)

Here, we are interested only in the second category — process virtual machines — and we will briefly
describe certain parts of their internal anatomy necessary to understand the rest of this paper.


https://www.welivesecurity.com/2021/10/27/wslink-unique-undocumented-malicious-loader-runs-server/
https://www.welivesecurity.com/2017/09/21/new-finfisher-surveillance-campaigns/
https://www.welivesecurity.com/wp-content/uploads/2018/01/WP-FinFisher.pdf
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Process virtual machines run as normal applications on their host OSes, and in turn run programs whose
code is stored as OS-independent bytecode (Figure 1) that represents a series of instructions — an
application - of a virtual ISA (instruction set architecture).

Offset 0 Offset10 Offset16

Operand 1 Opcode 8
- - : Sizaq e B
Offset 0 Offset 2 Offset 6 Offset 10 Offset 12 Offset 16 Offset 18 Offset 22

Figure 1. lllustration of bytecode, where all opcodes and operands are virtual

One can also think about bytecode as a sort of intermediate representation (IR); an abstract
representation of code consisting of a specific instruction set that resembles assembly more than a
high-level language. It is also known as intermediate language.

The use of IR is convenient in terms of code reusability — when one needs to add support for a new
architecture or CPU instruction set, it is easier to convert it to the IR instead of writing all the required
algorithms again. Another benefit is that it can simplify the application of some optimization algorithms.

One can generally translate both high- and low-level languages into an IR. Translation of a higher-level
language is known as “lowering”, and similarly translation of a lower-level one, “lifting".

The following example lifts an assembly block bbo into a block with the pseudo-IR code irbo. All
assembly instructions are translated into a set of IR operations and individual operations in sets do not
affect each other, where zZF stands for zero flag and cF for carry flag:

bbo0:
MOV R8, 0x05
SUB AX, DX
XCHG ECX, EDX
irbo:

R8 = 0x05

EAX[:0x10] = EAX[:0x10] - EDX[:0x10]
ZF = EAX[:0x10] - EDX[:0x10] == 0x00

CF = EAX[:0x10] < EDX[:0x10]

ECX = EDX
EDX = ECX

Modern process VMs usually provide a compiler that can lower code written in a high-level language --
one that is easy to understand and comfortable to use - into the respective bytecode.

A VM's ISA generally defines the supported instructions, data types and registers, among other things,
that naturally must be implemented by a virtual ISA as well.

Instructions consist of the following parts:

e opcodes — operation codes that specify an instruction
e operands — parameters of the instructions


https://www.arm.com/glossary/isa
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ISAs often use two well-known virtual registers:

e virtual program counter (VPC) - a pointer to the current position in the bytecode
e virtual stack pointer — a pointer to pre-allocated virtual stack space used internally by the VM

The virtual stack pointer does not have to be present in all VMs; it is common only in a certain type of
VM - stack-based ones.

We will refer to the instructions and their respective parts of a virtual ISA simply as virtual instructions,
virtual opcodes, and virtual operands. We sometimes omit the explicit use of “virtual” when it is obvious
that we are talking about the virtual representation.

An OS-dependent (Figure 2) executable file — interpreter — processes the supplied bytecode and
sequentially interprets the underlying virtual instructions thus executing the virtualized program.

ADD EAX, EDX

L 4

Windows x86 interpreter

RO =RO +R1 ADDU $2, $3, $2

L 4

Bytecode Linux MIPS interpeter

ADD WO, W1, Wo

L 4

macOS ARM64 interpreter

Figure 2. Illustration of the relationship between bytecode and the VM's interpreter

Transfer of control from one virtual instruction to the next during interpretation needs to be performed
by every VM. This process is generally known as dispatching. There are several documented dispatch
techniques such as:


https://andreabergia.com/stack-based-virtual-machines/
http://www.cs.toronto.edu/~matz/dissertation/matzDissertation-latex2html/node6.html
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e Switch Dispatch - the simplest dispatch mechanism where virtual instructions are defined as case
clauses and a virtual opcode is used as the test expression (Figure 3)

« Direct Call Threading - virtual instructions are defined as functions and virtual opcodes contain
addresses of these functions

» Direct Threading - virtual instructions are defined as functions again; however, in comparison
to Direct Call Threading, addresses of the functions are stored in a table and virtual opcodes
represent offsets to this table. Each function should indirectly call the following one according to the
specification (Figure 4)

The body of a virtual opcode in the interpreter’'s code is usually called a virtual handler because it
defines the behavior of the opcode and handles it when the virtual program counter points to a location
in the bytecode that contains a virtual instruction with that opcode.

By context, regarding VMs, we mean a sort of virtual process context: each time a process is removed
from access to the processor during process switching, sufficient information on its current operating
state - its context — must be stored such that when it is again scheduled to run on the processor, it can
resume its operation from an identical position.

Interpreter
o3
——> Fx
context.RO += *(int*)context.vpc
context.vpc += 4 // <operand_size>
Virtual handler 0
_— L
3 ) {53
@ Fx
Fx €
target = &virtual_handlers + *(short*)context.vpc * 4 CONtext.RO -= context.R1
context.vpc += 2 // <opcode_size>
jmp target
Virtual handler1
Dispatcher
N

LN

S

Fx
Virtual handler Exit

Figure 3. lllustration of Switch Dispatch, where RO is a virtual register


https://tldp.org/LDP/LG/issue23/flower/context.html
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0001| 000100000001 | 0008 0000000A | - - -
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\ '

context.RO += 0X00000001 !

context.vpc += 6 // <instruction_size>

1
'
1 1
Jmp target 1 ==
1
1
P '

target = virt_handler_table + “(short*)context.vpc * A—W &Virtual handier8 0008 0000000A | - - -
i '

y 1
context.RO += 0X0000000A

context.vpc += 6 // <instruction_size>
1
jmp target % B

i
Figure 4. lllustration of Direct Threading

Obfuscation techniques are a kind of software protection intended to make code hard to understand
and hence conceal its objectives. Such techniques were initially developed to protect the intellectual
property of legitimate software, i.e., to hamper reverse engineering.

Virtual machines used as obfuscation engines are based on process virtual machines, as described
above. The primary difference is that they are not intended to run cross-platform applications and they
usually take machine code compiled or assembled for a known ISA, disassemble it and translate that to
their own virtual ISA. It is also usually the case that the VM environment and the virtualized application
code are contained in one application, whereas traditional process VMs usually consist of a process that
runs as a standalone application that loads separate, virtualized applications

The strength of this obfuscation technique resides in the fact that the ISA of the VM is unknown to
any prospective reverse engineer — a thorough analysis of the VM, which can be very time-consuming,
is required to understand the meaning of the virtual instructions and other structures of the VM.
Further, if performance is not an issue, the VM's ISA can be designed to be arbitrarily complex,
slowing its execution of virtualized applications, but making reverse engineering even more complex.
Understanding of the VM is necessary for decoding the bytecode and making the virtualized code
understandable.

Context has a bit of a different meaning in regard to obfuscating virtual machines: each time we want
to switch from the native to virtual ISA or vice-versa, sufficient information — context — on the current
operating state must be stored so that when the ISA has to be switched back, execution can resume
with only the relevant data and registers modified.

Additionally, obfuscating VMs usually virtualize only certain “interesting” functions — native context is
mapped to the virtual one and bytecode, representing the respective function, is chosen beforehand.
The built-in interpreter is invoked afterwards (Figure 5). Beginnings of the original functions contain
code that prepares and executes the interpreter — entry of the VM (vm_entry); the rest of their code is
omitted in Figure 5.

Interpreter, bytecode, and virtual ISA code with data of obfuscating VMs are often all stored in a
dedicated section of the executable binary, along with the rest of the partially virtualized program.
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Figure 5 shows the way a function, Function 1, in the original application targeting a common ISA can
be virtualized for an obfuscating VM's ISA. It needs to be converted into bytecode, for example using a
generate_bytecode method. Its body is afterwards overwritten by a call into vim_entry and zeroes.
The vm_entry function chooses the respective bytecode, for example, based on the calling function'’s
address, then conducts a context switch, and next interprets the bytecode. Finally, it returns to the code
where the virtualized function, Function 1, would return.

N
Function 1 bytecode ptr
Function 1 bytecode ptr

Function 1 bytecode

Bytecode addresses

LN -

I

I

3 o : |

Fx generate_bytecode(Function 1) 1
)

push ebp — D '
1
\
retn |
1

Function1 L8

o {S

@ 94
Fx

m choose_bytecode(caller_addr)

switch_context_virtual()
execute_interpreter()
switch_context_native()
return

call vm_entry
\x00\x00\x00...

Virtualized Function 1
vm_entry

Figure 5. Overview of the virtualization process
In VMs hosted on x86 architectures, such context switches usually consist of a series of PUSH and PoOP
instructions. For example:
PUSH EAX
PUSH EBX

PUSH ECX

MOV ECX, context_addr
POP DWORD PTR [ECX]

POP DWORD PTR [ECX + 4]
POP DWORD PTR [ECX + 8]

When the bytecode is fully processed, virtual context is mapped back to native context and execution
continues in the non-virtualized code; however, another virtualized function could be executed in the
same manner, right away.

Note that several context switches can occur in one virtualized function, for example when a native
instruction from the original ISA could not be translated to virtual instructions or an unknown function

from the native APl needs to be executed.
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Documented techniques for deobfuscation of virtual machines

Obfuscating VM techniques have become widely misused for illicit purposes such as obfuscation of
malware samples as they hinder both analysis and detection. Hence there is motivation to overcome
these obfuscation techniques so as to facilitate analysis of such malicious code and to achieve overall
improvement of detection methods.

But first, we want to clarify several terms that are used in this and following sections and might not be
known to all readers.

Symbolic execution is a code analysis technique, where specific variables are represented with symbolic
values instead of concrete data. Arbitrary operations with these symbolic values produce symbolic
expressions. It is usually applied on the code’s IR and the symbolic expressions include flags.

One can visualize the symbolic expressions like mathematical formulas as can be seen in the following
example, where irb1 contains a block of pseudo-IR:

irbl:
R13 = R13 + 0x027D3930
RBX = RCX + 0x05
R13 = R13 + -RSI

R13 = R13 + RBX
irbl_symb:
RBX = RCX + 0x05
R13 = R13 + RCX + 0x05 + -RSI + 0x027D3930

ZF = R13 + RCX + 0x05 + -RSI + 0x027D3930 == 0x00

The state of symbolically executed code consists of:

 Values of all variables

e Program counter

e Accumulated constraints that the program'’s inputs need to satisfy to reach the associated location from the
entry point

Accumulated constraints can be understood as a theory in logic. In order to find concrete values of the
initial variables with symbolic values — inputs — we need to find a satisfying model, which can be done
with an

SMT (satisfiability modulo theories) solver.

Path coverage is another code analysis technique that determines all possible paths in a piece of code. It
is usually implemented using symbolic execution instructed to explore all reachable paths - reachability
of newly discovered paths is verified by an SMT solver and already known paths are marked to prevent
infinite loops.

Microsoft describes program synthesis as “the task of automatically discovering an executable piece of
code given user intent expressed using various forms of constraints such as input-output examples,
demonstrations, natural language, etc.”.

Several techniques to deal with VM-based obfuscation have been proposed in the past. Here we briefly
walk through them and discuss their advantages and disadvantages.


https://link.springer.com/content/pdf/10.1007/978-3-540-78800-3_24.pdf
https://www.microsoft.com/en-us/research/project/program-synthesis/
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Rolf Rolles described several standard steps to manually recover the original code, where the drawback is
time-complexity:

1. Reverse engineer and understand structures of the VM

2. Detect entries into the VM

3. Develop a disassembler for the instruction set by identifying the purpose of individual virtual opcodes or
matching them against already known ones

4. Disassemble the bytecode and convert it into intermediate representation — the semantics of some
instructions might be hard to comprehend in basic blocks without further translation (e.g., stack-based VMs
would contain a lot of confusing PUSH and POP machinations”)

5. Apply compiler optimizations to get rid of additional obfuscation techniques

6. Generate the deobfuscated code

He additionally suggested the use of pure symbolic execution on the virtual opcodes in the fourth step
to obtain a representation, where each opcode is a mathematical function that is a map from its input
space into itself. The pure symbolic execution technique was later independently implemented in a

Miasm blogpost.

Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet proposed a fully automatic approach to
overcome obfuscating VM protection on samples with a finite number of executable paths. The
approach consists of the following steps:

Identification of the sample’s inputs

. Isolation of pertinent instructions dependent on the identified inputs on an execution trace

. Performance of a path coverage analysis to reach new paths - traces

. Reconstruction of the original program from the resulting traces — they are combined and compiler
optimizations partially recover the control flow graph

A wWw N~

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Hol produced a semiautomatic
approach, based on program synthesis, that uses instruction traces as a black-box oracle to produce
random input and output pairs. The I/O pairs are subsequently used to learn the code’s underlying
semantics with the synthesizer.

These pairs and semantics are generated for the virtual opcodes that must be identified beforehand -
the VM needs to be partially reverse engineered to locate its components.

The approach does not seem to be applicable to some complex (particularly obfuscating) VMs due to
its time complexity, as it reportedly took almost three hours to process 36 virtual opcodes of a VM -
duplication of handlers, which is a simple and common obfuscation technique, would be a huge issue.

The Miasm framework

Miasm is a free and open-source reverse-engineering framework that aims to analyze, modify and
generate binary programs. It has a number of useful features that we use throughout our analysis:

» Opening, modifying and generating binary files — PE and ELF

e Assembling and disassembling of various architectures such as x86, ARM, MIPS...
* Representing assembly semantics using intermediate representation

« Simplification rules for automatic deobfuscation

« Symbolic execution engine

There are several frameworks for reverse-engineering that provide the features that we needed; we
decided to use Miasm in this project simply because it is actively maintained, and we are already familiar
and satisfied with it.


https://www.usenix.org/legacy/event/woot09/tech/full_papers/rolles.pdf
https://miasm.re/blog/2016/09/03/zeusvm_analysis.html
http://shell-storm.org/talks/DIMVA2018-deobfuscation-salwan-bardin-potet.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-blazytko.pdf
https://github.com/cea-sec/miasm/issues/441
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The features that we want to use are covered in the example section of its GitHub repository description
and its documentation.

We encourage the reader to get familiar at least with semantics of its IR that are summarized in Table 1,
since they are going to be used repeatedly.

Element Example

Exprid EAX

EXprAssign A=B

Exprint 0x18

ExprLoc location_1

ExprCond A?B:C

ExprMem @16[ESI]

ExprOp A + B

ExprSlice AH = EAX[8:16]
ExprCompose {EAX 0 32, 0x0 32 64}

Table 1.

Miasm'’s IR semantics

The destination address of a symbolic execution performed over a block of code is saved in the
respective program counter such as RIP and additionally in a special variable IRDst.

Note that during Miasm's symbolic execution: initial values of registers, which are treated as variables,

are symbolic and their format is <register name>_init. Simplification rules are applied automatically
to the symbolic expressions. For example, the symbolic expression RAX =
automatically simplified into RAX =

RCX_init + 0Ox5.

RCX + 0x2 + 0x3iS

WSLINK'S VIRTUAL MACHINE ENTRY - VM_ENTRY

Let's get to the analysis of Wslink’s VM now. There are several function calls that enter the VM, all of

which are followed by some gibberish data that IDA attempts to disassemble - the data most likely just

overwrites the function’s original code before virtualization (Figure 6).

P2

Ctext:eepaayFEEBCF2ATE
Ctext:eapae/FEEBCF2A7E
Ltext:eaaea7FEEBCF2ATE
Lext:eaeea7FEEBCF2ATE
Ttext:eepaayFEEBCF2AYE
Ctext:eepaeyFEEBCF2ATE
Jtext:eepae7FEEBCF2ATE
ext:eaeea7FEEBCF2ZATE

text:ebBen7FEEBCF2ZAST

@68 77 51

3 DWORD _ stdcall StartAddress(LPVO
StartAddress proc near

var_lé= gword ptr -1@h

.text:0e0087FEEBCF2AYEG @88 48 53 push rbx
.text:0e80@7FEEBCF2AY2 BB8 48 83 EC 68 sub rsp, 68h
.text:0880887FEEBCF2AV6 868 48 BB @5 13 BD @D aae mov rax, cs:qword_7FEEBDCE798
Ltewt:@a8087FEEBCF2ATD @68 48 33 C4 war rax, rsp
.text:000007FEEBCF2ABR BGE 48 89 44 24 58 mov [rspteBh+var_18], rax
.text:0e808@7FEEBCF2ABS @68 48 8B DO mov rbx, rcx
-text:8888@7FEEBCF2ABE @68 E8 E3 FD @E 88 call vm_entry
.text:0e8a87FEEBCF2ABD @68 AE scash

Ltext:ee0ea7FEEBCF2ABE @68 A3 CC 4F 24 B6 8C F7 CC 28 ds:28CCF78CE6244FCCh, eax

DirectioniT}fF Address Text

Zlat Up p sub_TFEEBCFLCZ0+D call  wn_entry

e ds : 71974AB4CS 6391 Up p  sub_TFEEBCF2TEO+1E call  wrn_entry
stosd Up p sub_TFEEBCF2860+4 call  wrn_entry

xchg i L = 4 Wi _entry

out @A7h, al i —

e short loc 7FEEBCH Do, p o sub_TFEEBCF2B20+22 call  wm_entry

™7 Do.. p  sub_TFEEBCF2E40+18 call  wm_entry
Dow. p o Servicebain+D call  wrm_entry

Figure 6. Entry point to the virtual machine


https://github.com/cea-sec/miasm/tree/master/doc
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The vm_entry of the VM:

e calculates the actual base address by subtracting the expected relative virtual address from the actual
virtual address of a place in the code

e unpacks code and data related to the VM on the first run; it uses the calculated base address to
determine the location of the packed VM and destination of the unpacked data

e executes an initialization function - one of the vm_pre_init() functions to be described is based on
the caller’s relative address that is mapped to the respective vin_pre_init()

PACKER

Wslink’s VM is packed with NsPack to reduce the size of the huge executable file; additional obfuscation
is probably just a side effect. Similarities between Wslink's unpacking code and ClamAV'’s unspack()
function are clearly visible (Figure 7 and Figure 8). Note that Ghidra has optimized out calculation of the
base address.

17 wm_pre_init dispatch = &wm_pre_init dispatch_table:

13 hase = 0x180000000;

13 if {(is_packed !'= 0) {

20 prepare in redq paramsi);

21 if (((¥in RE < "wx02') && (Oxd < (uint)in B9)) && (c = SEXT14{in R&[1]), (int)c < Oxel)) |
22 firsthyte = 0;

23 if (OxZc < (int)c) {

24 firsthyte = o f Oxa2d:

Z5 co=c % Oxid;

26 L

27 allocsz = 0;

28 if (& < (int)c) !

29 allocsz = o f 9;

30 oco=o % 9}

3l L

32 wery real unpack(in RS + in RS, (0300 << ((char)allocsz + (char)c & OxLET)) * 2 + Oxedc,c,
33 allocse,firstbhyte,in B8 + Oxe, (uint)in RS9 - 0Oxe,in RCX,*in FDX,
34 regizster0x00000020) ;

35 *in BDX = ret addr;

36 uvarl = 0;

37 }

38 else |

39 uvarl = OXEEEELEEE;

40 i

41 return uvarl;

4z i

43 f% chooge vm_pre_init() function */

44 while (*wm _pre_init dispatch !'= ret addr + Ox7E£E£££££h) {

45 v pre_init dispatch = vm pre init dispatch + 2:

46 i

Figure 7. A part of vm_entry of the virtual machine decompiled with Ghidra


http://www.heaventools.com/pe-explorer-nspack-unpacker.htm

Under the hood of Wslink’s multilayered virtual machine

if (c»= } return 1;
if {(c>= Y|
firstbyte = 1 =/ -
do  {c+= ;Y while (--1) ;
} else firsthyte = 0;
if {c»=0) |
allocsz = 1 = cf0:
do  {c+= ;Y while (--1) ;

} else - allocsz =-0;

tre =-C;

i.=.allocsz:;

c.= (tret+i)s :

tablesz = ({ <<C)+ )*sizeof(uintlﬁ_t);

if(cli checklimits{"nspack", -ctx, tablesz, 0, 0) '=CL CLERN)
return 1; /% Should be ~15KB, -if - it's .so big it's prolly.-just not nspacked . */

cli dbgmsg("unsp: table size = %d'n", tablesz);

if (Y{table = cli malloc{tablesz))) {
cli dbgmsg("unspack: -Unable to-allocate memory-for-tablein");
return 1;

}

dsize cli readint3Z(start of stuff+9);
ssize = cli readint3Z(start of stuff+);
if {z33ize <= Yoo

free{table) ;

return 1;

tre = very real unpack({table,tablesz, tre,allocsz, firsthyte,src,ssize,dst, dsize);

Figure 8. Function used to unpack NsPack in ClamAV

The vm_pre_init_dispatch_table in Figure 7 is the structure that maps callers’ addresses of the vm_
entry to the respective vm_pre_init() functions that are to be described.
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JUNK CODE

Each part of the unpacked VM is obfuscated with lots of junk code — unnecessary additional instructions
significantly decreasing readability of the code. It often uses instruction pairs with opposite effects.

Neither the IDA nor the Ghidra decompiler is able to deal with such obfuscation; however, Miasm'’s
symbolic execution was able to make the code easily readable (Figure 9).

DA Yiew-A \:\ Symbol\cExecution-DxlldFdBtoDxlleﬂ42m | | Pseudocode-A
RAX = call_func_ret(@x11DFDD, RSP_init, RCX_init, RDX_init, RB_init, R9_init) ga[ v32 = (_inte4 *)(vBG[@] ~ v3l);
REX = @x127 85| wvse[@] = vie;
RCX = @l 86| wES = @x4BEFOOF2ig4;
RSP = call func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFF3@ 87| wvs4 = vas;
RBP = {@54[call_func_stack(@x11DFDD, RSP_init)] + @xFFFFFFFFFFFDE229 88| w83 = (_ int64)v3l;
zf = RSI_init == 8@ as| ez = (Ear‘ *}y3a;
nf = (RSI init)[63:64] o8| w8l = (_ inte4ju3z;
pf = parity(RSI_init & @xFF) 91| w33 = _InterlockedExchange64((volatile  inte4 *)&vB2, (
T = oxo 92| vB4 = v2e;
cf = ax@ 93| w34 = vB3;
af = ((call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFF78) ™ (call_func_sta 94| w83 = val;
TRDst = lac key 3 o5| w82 = (char *}v23;
@54[call_func_stack(@x11DFDD, RSP_init)] = call_func_ret{@x11DFDD, RSP_init, RCX_ 96| vE1l = Bx2AF36900i64;
ie4[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFF58] = RDX_init 97| wEe = @xS@D361D3i64;
@64 call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFER] = call_func_stack(@ og| w7 Bx78D1ABCE164;
i64[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFEB] = call_func_stack(@ ag = v25;
i54[call func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFF78] = call func_stack(@ 186 w24z
i64[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFF7B] = R12_init 181 - InterlockedExchange64(&78, int64)8078);
fie4[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFE8] = [@64[call_func_sta 102 = :.19; o
i64[call_func_stack({@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFBB] = RB_init 103 7 (_ inteayuaz;
@64[call_func_stack(@x11DFDD, RSP_init) + BxFFFFFFFFFFFFFFIB] = RI_init 184| B2 = (char *jv2z;
ie4[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFO8] = R18_init 1es| vel = az2;
64[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFAB] = R11_init 186| 36 = a2 A (unsigned  inte4)&vEl;
ic4[call_func_stack(@x11DFDD, RSP_init) + @xFFEFFEFFFFFFEFAZ] = R12_init 107| vB1 A= vie; -
c4[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFBE] = R13_init 188| w37 = vEL ~ v3s;
@64[call_func_stack(@x11DFDD, RSP_init) + BxFFFFFFFFFFFFFFBB] = R14_init 10| vee = v33;
i64[call func stack(@x11DFDD, RSP init) + @xFFFFFFFFFFFFFFCE] = RIS init 118 _Interlockedexchangesa(&use, int64)&vEa);
i64[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFCE] = RDI_init 111| V82 = (char *)v2o; -
i64[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFDB] = RSI_init 112| VBl = ex74E27FEEied;
i64[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFDB] = RBP_init 13| vEe = v37;
i64[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFER] = RBX_init 114| 38 = _InterlockedExchange64(&vB8, (_ int64)&vEa);
@64[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFEB] = RBX_init 115| w82 = (char *)v3a; -
i64[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFF@] = RDX_init 116 - va2;
i64[call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFFB] = RCX_init 117| 78 = (_ inteayvsz;
118| wB1 = (_ int64)v3l;
119 B8 = @x276C41B1i64;
128 w79 = (__int64)v24a;
121| w39 = _InterlockedExchange64(&v79, (_ inted4)&/72);
122 w79 = ad;
123| w42 = _InterlockedExchange64(&v79, (_ inted)&v79);
124 Bl = v26;

Figure 9. A block of code in Miasm’s symbolic execution (left) and a part of the same block in IDA's decompiler (right)
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VIRTUAL MACHINE INITIALIZATION

Initialization of the VM consists of several steps, such as saving values of the native registers on the
stack and later moving them to the virtual context, relocation of its internal structures, or preparation of
bytecode. We cover these steps more thoroughly in the following subsections.

vm_pre_init() functions

vm_pre_init() functions are meant only to prepare parameters for another stage of initialization
(Figure 10). These functions call a single vm_init () function (explained in the next section) with
specific parameters. The supplied parameters are:

e CPU flags, RFLAGS, which are stored on the stack with a PUSHF instruction at the beginning of each
function
» hardcoded offset to a virtual instruction table that represents the first virtual instruction to be
executed (its opcode)
e hardcoded address of the bytecode to be interpreted
O &8 % ‘ | Symbolic Execution - 0x12bcf7 ko 0x12be25

12BDBS add rdx, o RSP = RSP_init + @xFFFFFFFFFFFFFFES

12BDB9 add I"I:,b‘:J 3 zf = RBX Iﬂlt == @x@

12BDC® xchg  rdx, ['"SPII] nf = (REX_init)[63:64]

12BDC4 mov rsp, [rsp+] pf = parity(RBX_init & @xFF)

12BDC8 push  53376C2ah of = @ -

12BDCD sub rsp, B of = ax@

12BDD1 push  ril@ af = ((RSP_init + @xFFFFFFFFFFFFFFE@) " (RSP_init + BxFFFFFFFFI
12B0D3 mow rl@, rax IRDst = loc_key 2

12BDDE mov [rsp+l8h+var_le], rle @54[RSP_init + @xFFFFEFFFFFEFFFCE] = @x21DBEA

12BDDB pop rle ic4[RSP_init + @xFFFFFFFFFFFFFFCB] = RBX_init

12BDDD pop [rsp+&+var_B] ic4[RSP_init + @xFFFFFFFFFFFFFFDB] = RBX_init

12BDE@ pop [rsptarg_8] i54[RSP_init + @xFFFFFFFFFFFFFFDE] = RSP_init + @xFFFFFFFFFFFFI
12BDE4 sub rsp, 8 {i54[RSP_init + @xFFFFFFFFFFFFFFE@] = RAX_init

12BDES sub rsp, B8 o -

12BDEC push rbx

12BDED pop [rsp+1@h+var_1@] @AGA[RSP o o o OE

12BDF@ pop [rsp+8+var_8]

12BDF3 pop [rsptarg_18]

12BDF7 push guord ptr [rsp+l]
12BDFA push [rspt8+var_ 8]

12BDFD pop rbx

12BDFE add rsp, 8
12BE®2 add rsp, 8
12BE®6 push [rsp-8+arg_a]
12BE®9 pop rax

12BE@A push rbx

12BEGE mov rbx, rsp
12BEBE add rbx, &
12BE12 add rbx, &
12BE19 xor rbx, r5p+l]
12BE1D xor [rsp+@], rbx
12BE21 xor rbx, [rsp+f]
12BE25 mov rsp, [rsp+d]
12BE29 jmp wm_init

Figure 10. Miasm's symbolic execution of a vm_pre_init() showing parameters supplied to vm_init()
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vm_init() function

vm_init() pushes all the native registers and the supplied CPU flags from parameters (context) onto
the stack; one can actually see it in Figure 9. The native context will later be moved to the virtual one
that, in addition, holds several internal registers.

One of the internal registers determines whether another instance of the VM is already running - there
is only one global virtual context and only one instance of the VM can run at a time. Figure 11 shows
the part of the code busy-waiting for the virtual register, where RBP contains the address of the virtual
context and RBX the offset of the virtual register — the internal register is stored in [RBX + RBP].

The entire function is summarized in Figure 12.

ol e 535 8

Segaaa: FBBEF

seghaa: FBE88F loc_FBBBF:

segaad: eaeaaaaaaearassr wor EEX, EeaxX

seghad: 2a0008020808F3891 lock cmpxchg [rbutrbp], ecx
segfed : G0eRARBRRRFEE36 jz loc_F88A3

ol e (=1 lw= FEH
seghad : BRaeaEaaeRarsE9C pause relocation check
sep@oe : PEGAREARBAFEEIE Fmp loc_FB888F

i 1 —

Figure 11. Busy-waiting for interpreter in vm_init()

The bytecode’s address, supplied in the parameters, is added to the virtual context along with the
address of the virtual instruction table, which is hardcoded. Both have a dedicated virtual register.

The VM calculates the base address again in the same way as was described for vim_entry; in addition,
it stores the address in another internal register that is used later, should an API be called. Then the base
address is used to relocate the instruction table, its entries, and the bytecode’s address.

The calculated base address is simply added to all the function addresses if they have not already been
relocated.
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e F [

save native context

= 2

busy-wait

¥
FIFERSDE

relocation check

y

v
leE =0

relocation

FIFIER e

execute initial virtual instruction

Figure12. vm_init() summary
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1EC74Eh,
1ECF4Eh,
1EDECSh,
1EE@42h,
1EEG4Fh,
1F@947h,
1F11E6h,

1EC84Ch,
1ECFFEh,
1ED7EFh,
1EE@BAh,
1EEB@1h,
1FBASTh,
1F13CCh,

1EC8F1h,
1ED1AZh,
1ED86Sh,
1EE1B&h,
1EEB5Dh,
1FBC77h,
1F1578h,

VIRTUAL INSTRUCTIONS

There are only 45 instructions in the virtual instruction table (Figure 13).
segAee : GAABEEAREA11DETE dg

seghHe: GAAEEEAABA11DETE dq

seg@ee: 6BARABRARAL1DETS dq

seg@a6: GAAEAEAREA11DETE dq

seghd: GAAEABAAEA11DETE dq

seghHe: GAAEEEAABA11DETE dq

seg@ee: 6BARABRARAL1DETS dq

segAee : GAAEEEAREA11DETE dq

Figure 13. Virtual instruction table

1F1969h,

1F1468h,

1F28BFh

1ECD73h,
1ED343h,
1ED9AShH,
1EE258h,
1EECD4h,
1FBE15h,
1F1722h,

1ECDEEh,
1ED4B1h,
1EDALAR,
1EE34Ch,
1EEE3Dh,
1F@FCEh,
1F17DFh,

1ECES6h
1EDSE6h
1EDF3Ch
1EE4ABh
1EF588h
1F1166h
1F186Eh

Let us look at the first one in the table. Initially, we need to relocate it; our dump of the VM starts
at address 0x00 and it is expected to be at base + 0xO0F33F5, so the target address is 0x1EC74E -

0x0F33F5, which is 0x0F9359 (Figure 14).

Segaed : ebaenaeaerarassa
Segoad : ebeepapaprarassa
seghen : BeaReRaRaRara3s9
Seghen  BeaReReRaRara3sg
Seghend : BeeRaReReRara3s9
Seghed : eoapeRaReRara3sg
Seghen : GoabenaeeRara3sg
Segbed : ebabenaeerara3sg
Seghed : abababeeerara3sg

; Attributes:

5 _ inte4  fastcall sub F9359()

thunk

sub F9359 proc near
sub FF2DB
sub F9359 endp

jmp

Figure 14. The first virtual instruction in the table

The gMp in Figure 14 leads us to a function at 0x0FF2DB whose behavior is remarkably similar to
vm_pre_init() (Figure 15 and Figure 16 for comparison). The function appears to be pushing another

bytecode address, the opcode of the initial virtual instruction, and CPU flags.
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O & x H Swmbolic Execution - Dx12bef7 o 0x12be2s

12BDES add rdx, & RSP = RSP_init + @xFFFFFFFFFFFFFFES

12BDB9 add I"d)(J, 8 zf = RBX Init == @xd

12BDCA xchg  rdx, ['"SF'II] nf = (RBX_init)[63:64]

12BDC4 mov rsp, [rspf] pf = parity(RBX_init & @xFF)

12BDCE push  53378C24h of = Bxa -

12BDCD sub rsp, B8 f = By

12B0D1 push  rl@ af = ((RSP_init + @xFFFFFFFFFFFFFFE@) " (RSP_init + BxFFFFFFFFI
12BDD3 mow rl@, rax IRDst = loc_key 2

12BDDE mov [rsp+l8h+var_l@], rla i54[RSP_init + @xFFFFEFFFFFEFFFCB] = @x21DBEA

12B0DE pop rie i54[RSP_init + @xFFFFFFFFFFFFFFCB] = RBX_init

12BD0D pop [rsp+8+var_8] i54[RSP_init + @xFFFFFFFFFFFFFFDA] = RBX_init

12BDE@ pop [rsptarg_8] i54[RSP_init + @xFFFFFFFFFFFFFFDB] = RSP_init + @xFFFFFFFFFFFFI
12BDE4 sub rsp, 8 i54[RSP_init + @xFFFFFFFFFFFFFFE@] = RAX_init

12BDES sub rsp, 8 W »

12BDEC push rhx

12BDED pop [rsp+l@h+var_1@]

12BDF@ pop [rsp+8+var_8]

12BDF3 pop [rsptarg_ 18]

12BDF7 push guword ptr [rsp+l]
12BDFA push [rsp+8+var_5]

12BDFD pop rbx
12BDFE add rsp, 8
12BE@2 add rsp, 8
12BE®6 push [rsp-8+arg_a]
12BE®9 pop rax
12BE@A push rbx
12BE®B mowv rbx, rsp
12BEBE add rbx, &
12BE12 add rbx, &
12BE19 xor rbx, [rsp+fl]
12BE1D xor [rsp+@], rbx
12BE21 xor rbx, [rsp+d]
12BE25 mov rsp, [rsp+@l]
12BE29 jmp wm_init
Figure 15. One of the vim_pre_init() functions
O &8 x || Symbolic Execution - D:xff2db ko Dxfr423
Trare Tov AT TEX RSP = RSP_init + @xFFFFFFFFFFFFFFES
pop rax zf = RSP_init == @x18
IFF3F6 push  rdi nf = (RSP_init + @xFFFFFFFFFFFFFFES)[63:64]
IFF3F7 pop [rspt+lshtarg 5] pf = parity((RSP_init + @xFFFFFFFFFFFFFFES) & @xFF)
IFF3FB pop rdi of = (((RSP_init + @xFFFFFFFFFFFFFFE@) ~ (RSP_init +
IFF3FC push  [rsp+l@h+var_ 18] cf = ((((RSP_init + @xFFFFFFFFFFFFFFE@) " (RSP_init
IFF3FF mov rbx, [rspt+lshtvar_18] af = ((RSP_init + @xFFFFFFFFFFFFFFE@) * (RSP_init +
IFF483 add rsp, 8 TRODst = loc key 2 -
IFF4A add rsp, 8 i54[RSP_init + @xFFFEFFFEEFFFFECE] = R15_init
IFF4@E push  [rsp+8+var_8] i54[RSP_init + @xFFFFFFFFFFFFFFCB] = @x1F2189
IFF41L push  [rsp+l@h+var_18] i54[RSP_init + @xFFFFFFFFFFFFFFD@] = RAX_init
IFF414 mov rax, [rsp+l8htvar 18] i54[RSP_init + @xFFFEFFEFEFFFFEDS] = RAX init
IFF4LE add rsp, 8 i64[RSP_init + @xFFFFFFFFFFFFFFER] = RAX init
IFF41F add rsp, 8 = = =
IFF423 add rsp, 8
IFF427 jmp sub_FJ7FFF
IFF427 sub_FF2DB endp

Figure 16. Miasm's symbolic execution of the first virtual instruction (function at 0x0FF2DB)

Inspecting the function at 0x0F7FFF (Figure 17), into which our virtual instruction jumps, reveals that it
appears to be another vm_init () (Figure 18). When we compare it to the previous one, we can see that
their behaviors are, indeed, the same. We will refer to these functions simply as vm2_pre_init() and

vm2_init().
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Symbolic Execution - Dxf7FFF to 0=FE880

RAX = call func ret(@xFae84, RSP init, RCX init, RDX init, R8 init, RO init)

Figure 17. Miasm's symbolic execution of the first block of vm2_init()

154 call_func_stack(exFsaad,
D54 call func stack(@xF3pad,
154 call_func_stack(exFsaa4,
D54 call func stack(@xFopad,
154 call_func_stack(exFsaad,
D54 call func stack(@xFopad,
D64 call_func_stack(B8xFaaad,
D64 call func stack(@xFapad,
DE4[call_func_stack(@xFagad,
D64 call func stack(@xFapad,
DE4[call_func_stack(@xFaaad,
D64 call func stack(@xFspad,
D54 call func stack(@xF3pad,
154 call_func_stack(exFsaad,
D54 call func stack(@xF3pad,
154 call_func_stack(exFsaa4,
D54 call func stack(@xFopad,
154 call_func_stack(exFsaad,
D54 call func stack(@xFopad,
D64 call_func_stack(B8xFaaad,
D64 call func stack(@xFapad,

RSP_init)] =
RSP_init)
RSP init)
RSP _init)
RSP init)
RSP _init)
RSP init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP _init)
RSP_init)
RSP init)
RSP _init)
RSP init)
RSP _init)
RSP init)
RSP_init)

e T i S S S S S R

+

call func_ret{@xF8884, RSP_init, RCX
mC4[call func_s

@xFFFFFFFFFFFFFFG@] =
@xFFFFFFFFFFFFFF6E]
@xFFFFFFFFFFFFFF7@]
@xFFFFFFFFFFFFFF78]
@xFFFFFFFFFFFFFF8@]
@xFFFFFFFFFFFFFF8E]
@xFFFFFFFFFFFFFF9@]
@xFFFFFFFFFFFFFFI8]
@xFFFFFFFFFFFFFFA@]
@xFFFFFFFFFFFFFFAS]
@xFFFFFFFFFFFFFFB@]
@xFFFFFFFFFFFFFFBE]
@xFFFFFFFFFFFFFFC@]
@xFFFFFFFFFFFFFFCE]
@xFFFFFFFFFFFFFFD@]
@xFFFFFFFFFFFFFFDE]
@xFFFFFFFFFFFFFFE@]
@xFFFFFFFFFFFFFFER]
@xFFFFFFFFFFFFFFF@]
@xFFFFFFFFFFFFFFFE]

REX = axFF

RCX = @xl

RSP = call_func_stack(@xF3e@4, RSP _init) + @xFFFFFFFFFFFFFFB8

RBP = (@64[call func_stack(@xFsea4, RSP _init)] + @xFFFFFFFFFFF@7FFC

zf = call func_stack(@xF3884, RSP_init) == GuB0

nf = (call func stack(@xF8@@4, RSP _init) + @xFFFFFFFFFFFFFFBB)[E3:64]

pf = parity((call_func_stack(@xF3@84, RSP_init) + @xFFFFFFFFFFFFFFE@) & @xFF)
of = ((({call func_ stack({exFE@a4, RSP _init) + BxFFFFFFFFFFFFFFYE) ™ (call func_
cf = ((({{call_func_stack({@xF5@a4, RSP_init) + @xFFFFFFFFFFFFFF78) ™ (call_func
af = (({call func_ stack(@xFE@84, RSP _init) + BxFFFFFFFFFFFFFF7E) ~ (call func s
IRDst = loc key 3

RDI_init
RSI_init
RSI_init

[@e4[call func s

R8_init
R9_init
R1@_init
R11_init
R12_init
R13_init
R14 init
R15_init
RDI_init
RSI_init
REP_init
REX_init
REX_init
RDX_init
RCX_init
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IDA Yiew-A

Symbolic Execution - 0x11dFdS to 0x11e842 £ |

| Pseudocode-A

RCX =

h=]
=N
[T T T A

af =

@54 [c

call_func_ret{@x11DFDD, RSP_init, RCX_init, RDX_init, R8_init, R9_init)

@127
axl

call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFS
@64 [call_func_stack(@x11DFDD, RSP_init)] + @xFFFFFFFFFFFDB229
RSI_init == &x@

(RSI_init)[63:64]
parity(RSI_init & @xFF)

axé
Bxd

((call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFF78) " (call_func_sta

IRDst = loc_key 3
@54[call_func_stack(@x11DFDD,
fi64[call_func_stack(@x11DFDD,
fie4[call_func_stack(@x11DFDD,
@54 [call_func_stack(@x11DFDD,

fi64[call_func_stack(@x11DFDD,
fie4[call_func_stack(@x11DFDD,
all_func_stack

stack(@x11DFDD,

@54[call_func_stack(@x11DFDD,
fi64[call_func_stack(@x11DFDD,

. (@x11DFDD,
_stack(@x11DFDD,
64[call func_stack(@x11DFDD,
fi64[call_func_stack(@x11DFDD,
fie4[call_func_stack(@x11DFDD,
@54 [call_func_stack(@x11DFDD,

RSP_init)] = call func_ret{@x11DFDD, RSP_init, RCX_

RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)

+ @xFFFFFFFFFFFFFF58]
+ @xFFFFFFFFFFFFFFG@]
+ @xFFFFFFFFFFFFFFGE]
+ @xFFFFFFFFFFFFFF78]
+ @xFFFFFFFFFFFFFF78]
+ @xFFFFFFFFFFFFFF38]
+ @xFFFFFFFFFFFFFFBE]
+ @xFFFFFFFFFFFFFFO6]
+ @xFFFFFFFFFFFFFFO8]
+ @xFFFFFFFFFFFFFFAG]
+ @xFFFFFFFFFFFFFFAS]
+ @xFFFFFFFFFFFFFFBE]
+ @xFFFFFFFFFFFFFFBE]
+ @xFFFFFFFFFFFFFFCE]
+ @xFFFFFFFFFFFFFFCE]
+ @xFFFFFFFFFFFFFFDB]
+ @xFFFFFFFFFFFFFFDE]
+ @xFFFFFFFFFFFFFFEG]
+ @xFFFFFFFFFFFFFFES]
+ @xFFFFFFFFFFFFFFFG]
+ @xFFFFFFFFFFFFFFFS]

RDX_init
call func_stack(@
call_func_stack(@
call func_stack(e
R12 init
@64[call_func_sta
RE_init
RO_init
R1E_init
R11 init
R1Z2_init
R13_init
R14_init
R15_init
RDI init
RSI_init
RBP_init
REX_init
RBX_init
RDX_init
RCX_init

84
85
86
87
88
89
98
a1
92
93
94
95
=1
97
98
99
1688
181
182
1@3
184
185
186
187
1@8
189
118
111
112
113
114
115
116
117
118
119
128
121
122
123
124

w32 = (_ int64 *I{vEe[8] ~ v3l);

vB6[8] = v2a;

VBS = Bw4BEFIOF2ic4;

vB4 = v28;

w83 = (_ int64)v3a;

w82 = (char *)v3a;

vBl = (__int64)v32;

v33 = _InterlockedExchangegd((volatile _ inted *)&vE2, (
vB4 = v2e;

w34 = w833

w83 = v2l;

w82 = (char *)v23;

vBl = Bx2AFB0000i64;

vBE = @x58D361031i64;

w79 = @x78D1ABCEI64;

v78 = va5;

vi7 = vi2d;

v35 = _InterlockedExchangega(&vrz, (_ inted)&v7s);
w78 = vl9;

w79 = (__inte4a)v2a;

w82 = (char *)v22;

vBl = ai;

V36 = a2 ~ (unsigned _ inte4)&vEl;

vBl = v36;

v37 = vBl ™ v363

vB8 = v33;

_InterlockedExchange64(&v32, (_ intad4)&vEa);

v82 = (char *)v2o;

Bl = @x74E27FBEi64;

vB@ = w373

w38 = _InterlockedExchange64(&vEa, (_ inted)&vEa);
w82 = (char *)v34;

w77 = w323

w78 = (_ int64)v32;

wvBl = (_ int64)v3a;

vED = @x276C41B1i64;

w79 = (__int64)v24;

v39 = _InterlockedExchangega(&vro, (_ inted)&v7a);
w79 = ad;

vad = _InterlockedExchange6a(&v7a, (_ inte4)&v79);
vB8l = v26j

Figure 18. Miasm'’s symbolic execution of the first block of vm_init()

Inspection of the other instructions revealed that they all execute this second VM with different vm2_
pre_init() functions - this clearly shows that there are two layers of VMs.

Virtual instructions of the first VM execute vm2_pre_init() directly without any dispatch table based
on the caller's address. The number of virtual instructions in the second VM is significantly higher - 1071
(Figure 19).

F3EB7
F3EB7
FSEB7
FSEB7
F3EB7
F5EB?
FSEB7
F3EB7
F3EB7
FSEB7
FSEB7
F3EB7
F5EB?
FSEB7
F3EB7
F3EB7
FSEB7
FSEB7
F3EB7
F5EB?
FSEB7
F3EB7
F5EB?
FSEB7
F3EB7
F3EB7
FSEB7
FSEB7
F3EB7
F5EB?

@8a1705h, 8a184Ch,
8a2CCCh, ea3erah,
8A43B1h, BA4771h,
BASS6Eh, BAS95Bh,
BasA34h, BAGD4ah,
BAS1FBh, BASGASH,
B8A9594h, BASOCFh,
BAABBGh, BAAFSZh,
BAC222h, BACA33h,
BADG2Fh, BAD910h,
BAECDSh, BAF@ASh,
@B841Eh, 8B@8725h,
BB194Ah, BB1D1Eh,
BB3874h, BB34Foh,
BB46ESh, BB4795h,
BBES7EEh, BBSAFSh,
BB757Eh, BE7576h,
BB3944h, BESD30h,
BBE9E44h, BBAL4Ah,
BBEE7D3h, BBEBE3h,
BEDBSFh, BED498h,
BBE7@5h, BBEEEah,
BEFASEh, BBFESZh,
B8C1322h, BC1756h,
BC26C3h, 8C2423h,
BC3025h, @c4a2esh,
BC56CEh, BC5ASSh,
BCEDE3h, BC7185h,
BC8863h, 8Cs8247h,
BC9584h, BCOABEh,

@8a1CFoh,
@883558h,
B8A4AASh,
@8a5089h,
Ba7eETh,
@BAB9CDh,
BA9E35h,
BaB354h,
BaCTBER,
BADDEGh,
BAFS35h,
@BeaADoh,
BE28C5h,
8B3844h,
@B4a14h,
@BSDECh,
B8E7Ce7h,
8E9@30h,
@BASCoh,
@EBFCLh,
@BDEDFh,
BBEBB2h,
@aCe1Beh,
@C1668h,
@C20F4h,
@C46CEh,
@C5E2Ch,
ec74a7h,
BC8SEEh,
@BC9ES3h,

@42140h, @A2573h, @A292Eh
BA3827h, BA3BF7h, BA3FBAh
BALEBDh, @AS878h, BAS4ETh
BASEEZh, BAB26Ah, BABE3Th
BA7565h, BATI4ACh, BATCDCh
BABLAA1h, BABE@Llh, B8A9194h
BL4AZT79h, BAAG41h, BAAISEh
@4AB736h, BABB31h, BABDGBh
BACES1h, BACF28h, B8AD2D8h
BAE213h, BAEGBBh, BAEBDGh
@4F921h, BAFCO8h, GE@E4Ch
@BeCCCh, @BlBABh, BB153Fh
8B2398h, @B284Dh, BB2C3%9h
@B3C61h, ©B4818h, B8B4399h
@B4D97h, ©B511Bh, BB5594h
@B61EZh, BBES5Elh, BBEBAFEBh
BB7FI8h, @BB322h, BBEGR4Eh
@B943@h, @B936Eh, @BAC4Eh
@BA94Bh, BBAEBBh, BBB32Bh
@BC3BCh, @BC7DEh, BBCE7Eh
@BD&ATh, BBDEFSh, BBE2C4h
@BEF4Bh, @BF2DFh, BBFE@7h
@Cash3h, @CAAAFh, BCAELCh
@C1E72h, @C28BCh, @C23B4h
@C317Ch, @C3544h, @C38FDh
ecag2eh, @C4E25h, BC51A5h
BC61CCh, @Ce5FBh, BCBAZLlh
@C75FFh, 8CTASCh, BC7CBCh
ecsseah, @CBCleh, BC9864h
@CAL152h, @CA4AEh, BCABSSh

Figure 19. A part of the second virtual instruction table
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Virtual instructions of the second virtual machine

We start by looking at the first few executed virtual instructions to observe the behavior of the second
VM and then try to process the rest of them in a partially automated way.

The diagram in Figure 20 highlights with blue, where the virtual instructions of the second VM are in the
structure of the VMs.

vm_entry()

l 1 1
vm_pre_init() vm_pre_init() vm_pre_init()
| | |
1

vm_init()

virtual_instruction() virtual_instruction() virtual_instruction()
vm2_pre_init() vm2_pre_init() vm2_pre_init(Q)

vm2_init()

|
l 1 1

virtual_instruction2() virtual_instruction2() virtual_instruction2()

Figure 20. Virtual instructions in the structure of the virtual machines

The first virtual instruction

The first virtual instruction is, exceptionally, not obfuscated, as can be seen in Figure 21. Finally, we can
see some operations in the virtual context.

By inspecting the modified memory and calculated destination address of the instruction, it is clear that
the instruction does three things:

1. Zeroes out a virtual 32-bit register at offset 0xB5 in the virtual context (highlighted in gray in Figure 21),
which is stored in the RBP register.

2. Avirtual 64-bit register at offset 0x28 is increased by 0x04: it is the pointer to the bytecode - virtual
program counter. The size of the virtual instruction is hence four bytes (highlighted in red in Figure 21).

3. The next virtual instruction is prepared to be executed, the offset to the virtual instruction table — virtual
opcode - is fetched from the virtual program counter. The virtual instruction table is at offset 0xa4
(highlighted in green in Figure 21). This means that the VM uses the Direct Threading Dispatch technique.
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0O & x | Symbalic Execution - OxedaTa to 0xeBadd

RAX = RBP_init + @xBS
RCX = [@64[@64[RBP_init + @xA4] + {@x@, @, 3, @16[@c4[RBP_init + @x28]], 3, 19, @x@, 19, 64}]
RIP = @64[[@64[RBP_init + @xA4] + {@x@, @, 3, @L6[@64[RBP_init + 8x28]], 3, 19, @x8, 19, 64}]
RSI = {exe, @, 3, @L6[@64[RBP_init + #x28]], 3, 19, @xé, 19, 64}
R18 = [@64[RBP_init + @xA4] + {@x@, @, 3, @LG[@64[RBP_init + @x28]], 3, 19, @x@, 19, 64}
sub_EBA7A proc near R13 = REP_init + @x28
mov rax, rbp zf = [@64[RBP_init + @x28] == @xFFFFFFFFFFFFFFFC
add rax, @65h nf = ([@64[RBP_init + @8x28] + @wxd)[63:64]
mov dword ptr [rax], @ | |of = parity((@64[RBP_init + @x28] + @x4) & OxFF)
mov rsi, @ of = ((@54[RBP_init + @x28] ~ (@64[RBP_init + @x28] + @x4)) & (@c4[RBP_init + @x28] ~ @xFFFFFF
mov ri3, rbp cf = (@64[RBP_init + @x28] ~ ((@54[RBP_init + 8x28] ~ ([@54[RBP_init + 8x28] + 8x4)) & ([@64[RBP,
add rl3, 28h ; (" af = ([@G4[RBP_init + @x28] ~ (@G4[RBP_init + @x28] + @x4) ~ @xa)[4:5]
mov ri3, [ri3+e] IRDst = [@G4[@G4[REP init + @xa4] + {exa, 2, 3, @LE[@E4[REP_init + @x2a
add ri3, @ R it 7 ¢ R it
mov si, [ri13+2] @22[RBP_init + @xB5] = @x@
=hl rsi, 3
mow rl3, rbp
add ri3, 8Adh
mow rla, [ril3+a]
add rl@, rsi
mowv rcx, [rle]
mow rl3, rbp
add rl3, 28h ; ('
add gword ptr [rl3+8], 4
jmp rox

sub_EBA7A endp

Figure 21. The initial virtual instruction of the second VM

Note that the size of the next instruction’s opcode is only two bytes and the remaining word is left
unused. We can see that it is just a zero when we look at virtual operands (Figure 22). Sizes of the other
instructions differ — it is not just padding that preserves the same size for all instructions.

BBFED94 dw 2CCh 3 Mext virtual opcode
@aFED96 dw @ ; Virtual operand

Figure 22. Bytecode of the virtual instruction

The second virtual instruction

The second virtual instruction does not do anything special; it just zeroes out several virtual registers
and jumps to the next instruction (Figure 23).

IRDst = [@64[[@54[RBP_init + @xAd] + {@x@, @, 3, @1G[@64[RBP_init + @x28]], 3, 19, @x@, 19, 64}]
i16[RBP_init + @xB] = @x@

64 [RBP_init + @x2B] = @64[RBP_init + @x28] + @x2
@32[RBP_init + @x48] = @x@
32[RBP_init + @x78] = @x@
i32[RBP_init + @x04] = @x@
@32[RBP_init + @xA@] = @x@
@32[RBP_init + @xEE] = @x@
@32 [RBP_init + @xFA] = @x@
@16 [RBP_init + @x1@3] = @x@
i32[RBP_init + @x133] = @x@
i16[RBP_init + @x149] = @x@

Figure 23. Destination address and memory modified by the second virtual instruction

The third virtual instruction

The third virtual instruction stores the address of the stack pointer in a virtual register (Figure 24); the
offset of the register is determined by one of the operands, and its offset is 0x0141 in our case.

IRDst = @64[@64[RBP_init + @xAd] + {@x8, @, 3, @16[@64[RBP_init + @x28] + @x2], 3, 19, @x@, 19, 64}]
64[RBP_init + {@16[@64[RBP_init + @x28]], @, 16, @x@, 16, 64}] = RSP_init
©64[RBP_init + ©x28] = {54[RBP_init + 8x28] + @x4

Figure 24. Destination address and memory modified by the third virtual instruction
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The fourth virtual instruction

The fourth instruction contains two immediately visible anomalies in comparison with previous
instructions — the stack pointer’s delta is lower at the end of the function and it contains a conditional
branch (Figure 25).

-88 cmp rax, rll
-88 j= loc_ 7FEEVFBBDIC
|
Ll il 5=
-@8 xor rld, rlaé
-88 and ri2, 9eh
-88 sub rsi, 8eh ; '€’
-88 add ri@, 98h
-88 and 12, 4
-28 add gword ptr [rll], 8

X

ol e 5]

loc 7FEEVFGBBDIC:

-88 add rbx, 7FFFFFFFh

-38 add rl15. 26h 3 " °

-88 mowv ria, rbp

100.00% |(-5,1363) | (295,236) 00114249 000007FEETF

.'ﬁ'. Graph overview O &8 %
o :

Figure 25. The conditional branch and delta of the stack pointer of the fourth virtual instruction

Symbolic execution of the first block reveals that a value is popped from the stack into a virtual register
(Figure 26), which makes sense as the values of the native registers remain on the stack after being
saved there by vm2_init (). They are now being moved to the virtual context - the context switch is
partially performed by a number of virtual instructions, each of which pops one value off the stack into a
different register.

TRDst = ({(@16[RBP_init + @xB] + -(@32[RBP_init + @x7@] ~ {@16[@64[RBP_init + @x28] + @x4], @, 16, Ox@, 16, 32})[0:16]) ~ @x3@38, @, 16, Ox8, 16, 64} == {@16[@64[RBP_init + @x28] + @xe], @,
@16[RBP_init + @xB] = @16[RBP_init + GxB] + -(@32[RBP_init + 8x78] ~ {@16[@6A[RBP_init + 8x28] + Gxa], @, 16, @x8, 16, 32})[0:16]

@32[RBP_init + @x70] = @32[RBP_init + 6x70] & (@32[RBP_init + @x78] ~ {@16[@64[RBP_init + 6x28] + ox4], @, 16, @x8, 16, 32})

@54[RBP_init + {(@16[RBP_init + @xB] + -(@32[RBP_init + @x78] ~ {@16[@64[RBP_init + ©x28] + @x4], 8, 16, @x8, 16, 32})[8:16]) ~ @x3838, @, 16, OxB, 16, 64}] = @EA[RSP_init]

Figure 26. Destination address and memory modified by the fourth virtual instruction

The virtual register, where the value of the native register is to be saved, is determined by an operand
and two other virtual registers at offsets 0x0B and 0x70. However, their initial value is already known:
they were set to zero by the second virtual instruction (Figure 23), which means that we can calculate
the offset of the register and simplify the expressions — they are used just to obfuscate the code.
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Rolling decryption

Analysis of other virtual instructions confirmed that the virtual registers at offsets 0x0B and 0x70 are
meant just to encode operands. This technique is called rolling decryption and it is known to be used
by the VMProtect obfuscator. However, it is the only overlap with that obfuscator and we are highly
confident that this VM is different.

The obfuscation technique is certainly one of the reasons for the enormous number of virtual
instructions — use of the technique requires duplication of individual instructions since each uses a
different key to decode the operands.

Simplification

The expressions can be simplified to the following when we apply the known values of the virtual
registers:

IRDst = (-@16[@64[RBP_init + 0x28] + Ox4] A 0x3038 == @16[@64[RBP_init + 0x28] +
0x6])?(0x7FEC91ABD1C, 0Xx7FEC91ABCF6)

@64[RBP_init + {-@16[@64[RBP_init + 0x28] + 0x4] ~ 0x3038, 0, 16, 0x0, 16, 64}] =
@64[RSP_init]
Now let us take a look at the expression in the conditional block:

@64[RBP_init + {@16[@64[RBP_init + 0x28] + 0x6], 0, 16, 0x0, 16, 64}] = @64[RBP_
init + {@16[@64[RBP_init + 0x28] + 0x6], 0, 16, 0x0, 16, 64}] + 0x8

We can now see that the virtual instruction is definitely POP - it moves a value off the top of the stack
to a virtual register, whose offset is still obfuscated with a simple XOR; it additionally increases the stack
pointer when the destination register is not the stack pointer.

As values in the bytecode are known too, we can apply them and simplify the instruction even further
into the following final unconditional expressions:

IRDSt = @64[@64[RBP_init + OxA4] + Ox5A8]
@64[RBP_init + 0x28] = @64[RBP_init + 0x28] + 0x8
@64[RBP_init + 0x141] = @64[RBP_init + 0x141] + 0x8

@64[RBP_init + 0x12A] = @64[RSP_init]

Automating analysis of the virtual instructions

As doing this for more than 1000 instructions would be very time consuming, we wrote a Python script
with Miasm that collects this information for us so we can get a better overview of what is going on.
We are particularly interested in modified memory and destination addresses.

Just as in the fourth virtual instruction, we will treat certain virtual registers as concrete values to
retrieve clear expressions. These registers are dedicated to the rolling decryption and perform memory
accesses that are relative to the bytecode pointer, e.g. [<obf_reg_1>] = [<bytecode_ptr> +
0x05] A OxABCD.

Subsequently we concretize the pointer to the virtual instruction table too and, by the end of the virtual
instruction: calculate addresses of the next ones, clear the symbolic state, and start with the following
virtual instructions.

We additionally save aside memory assignments that are not related to the internal registers of the VM
and gradually build a graph based on the virtual program counter (Figure 27).


https://back.engineering/17/05/2021/#rolling-decryption
https://vmpsoft.com/
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! l

Figure 27. Call graph generated from memory assignments and the VPC

We stop when we cannot unambiguously determine the next virtual instructions to be executed; one
can automatically process most of the virtual instructions in this way.

Note that instructions featuring complex loops cannot be processed with certainty and need to be
addressed individually due to the path explosion problem of symbolic execution, which is described

for example in the paper Demand-Driven Compositional Symbolic Execution: “Systematically executing
symbolically all feasible program paths does not scale to large programs. Indeed, the number of feasible
paths can be exponential in the program size, or even infinite in presence of loops with unbounded
number of iterations.”


https://www.microsoft.com/en-us/research/wp-content/uploads/2008/01/fulltext.pdf
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Getting back to the first virtual machine

Before diving into the virtual instructions of the first VM, let us recap where we currently are. We have
just described a way to semiautomate processing of the bytecode belonging to the second VM (blue

in Figure 28) that interprets virtual instructions of the first VM (red in Figure 28). Now we move on to
inspect instructions of the first VM with this approach.

vim_entry()

vm_pre_init() vm_pre_init() vm_pre_init()

vm_init()

Figure 28. Virtual instructions in the structure of the virtual machines
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The initial virtual instruction

In this section we describe the results of processing of the initial virtual instruction of the first VM in the
semiautomatic manner that was described in the previous section.

We performed all the processing on a virtual machine with i7-4770 CPU and 4GB of memory. Statistics
in Table 2 have been extracted from the processing of the initial virtual instruction.

Size of the bytecode block in bytes 1,145
Total number of processed virtual instructions 109
Total number of underlying native instructions 17,406

Total number of resulting IR instructions (including IRDsts) 307

Execution time in seconds

10.6509

Table 2. Statistics of the initial virtual instruction

The resulting control flow graph built out of the semantics extracted from the virtual instructions of
the second VM's bytecode that interprets the initial virtual instruction from the first VM can be seen in
Figure 29. We can divide the series into a few parts.

Figure 29. Control flow graph of the initial virtual instruction
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Intro

As expected, the graph starts with a series of POP instructions that move values of the native registers
saved beforehand in vm2_init () to the virtual ones (Figure 30). To determine positions of the native
registers on the stack, we could symbolically evaluate the first block of vm2_init() and map the virtual
registers to their native versions, which would make the code easier to read, but that is not important
now.

Remember that the virtual register at offset 0x1E contains the stack pointer, and that a POP instruction
moves a value off the top of the stack and usually increases the stack pointer.

@32[RBP_init + 0x47] = 0=0
IRD=t = loc key 47

-

IRDat = loc_key 57

A A

@64[BBP_init + 0x1E] = RSP _init
IRDst = loc key 64

A |
[ ks
@64 [REF init + 0x1E] = @64[REP init + Ox1E] + Ox3
@64[RBP init + 0x58] = @64[RSE_init]
IRDst = loc_key 180
AN vy
Y
f_\

@64 [RBP init + 0x1E] = @64[RBE_init + Ox1E] + 0x3
@64 [RBP init + 0x12B] = @64 [RSP init]
IRD=t = loc key 1E1

N - J

f_"\
@64 [RBP_init + 0x1E] = @64[RBF_init + 0x1E] + 0xa
@64 [RBP_init + 0x10F] = @64[RSP_init]

IRDst = loc key 182
A y

\
||| ‘
-

@64 [RBP init + 0x1E] = @64[RBP init + Ox1E] + 0x8
@64 [RBP init + OxFA] = @&4[RSP init]
IRD=st = loc key 183

\ - J

~

-,
||| J
-4

@64 [RBP init + 0x1E] = @64[RBE_init + Ox1E] + 0x3
@64 [REP_init + 0xD3] = @64[RSE_init]
IRDst = loc_key 184

Figure 30. Beginning of the intro finishing context switch of the second VM
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Outro

To map the virtual registers back to the native ones, the second VM pushes them all onto the stack and
then subsequently pops them off one by one to the native ones. Note that we set up an exclusion in our
algorithm and disabled optimizations to show assignments to registers in the last virtual instruction
(Figure 31).

R10 = @64[RSP_init + 0x10] U
R11l = @64[RSP_init + 0xl18]

R12Z = @64[RSP _init + 0x20]

R13 = @64[RSP init + 0x2E]

R14 = @64 [RSP init + 0x30]

R15 = @64[RSP_init + 0x3E]

zf = @32[RSP_init + 0xT8]1[6:7]
nf = @32[RSP_init + 0x78][7:8]
pf = @32[RSP init + 0x78][2:3]
of = @32[RSP_init + 0x78]1[11:12]
cf = @32[RSP_init + 0x78]1[0:1]
af = @32[RSP_init + 0x78][4:5]
df = @32[RSP init + 0x78][10:11]
tf = @32[RSP_init + 0x78]1[8:9]

i £ = @32[RSP_init + 0xT78][%:10]
icpl £ = @32[RSP_init + 0x78][12:14]

nt = @32[RSP init + 0x78][14:15]
rf = @32[RSP_init + 0x78]1[16:17]
vm = @32[RSP_init + 0x78]1[17:18]
ac = @32[RSP_init + 0x78][18:19]
vif = @32[RSP init + 0x78][19:20]
vip = @32[RSP init 4+ 0x78][20:21]
i d = @32[RSP_init + 0xT78][21:22]

exception flags = @3Z[RSP_init + Ox78][8:9]72(0x2,exception flags init)
IRDst = @64 [RBP init + 0x74]
@32 [RBP_init + 0OxFF] = 0x0

Figure 31. Virtual registers of the second machine being mapped back to the native ones at the end of the virtual
instruction
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Analysis of the virtual context

In this section we analyze the behavior of the first VM based on the results of the The first virtual
instruction section.

Figure 32 shows:

« virtual registers being pushed onto the stack at the beginning of the outro (red)
e partially the way the next virtual instruction is prepared to be executed (green)
 the virtual program counter being increased (blue)

In particular, the virtual program counter is represented by @64[@64[RBP_init + 0x38] + 0x2C],
where the register at @64[RBP_init + 0x38] holds the address of the virtual context. We can see that
size of the initial virtual instruction was 8 bytes, since the virtual program counter is increased by 8 in
the line highlighted with blue in Figure 32.

@64 [RBP_init + 0x137] = @64[RBP_init + O0x38] + 0x26
@32[@64[RBP_init + 0x38] + Ox26] = @32[RBD_init + 0x30] | @32[@64[RBP init + 0x38] -

@64 [RBP_init + 0x50] = (@64 [RBP_init + 0x30] & OXFFFF)?({0x2 0 2, parity(@64[REP_in
@64([RBP_init + 0x30] = @64[RBE_init + 0x30] & OXFFFF

@64[RBP_init + 0x50] = (@64[RBP_init + 0x30] << 0x3)?2({@64[RBP_init + 0x30] [61:62]
@64[RBP_init + 0x30] = @64[RBP_init + 0x30] << 0x3

@64 [RBP_init + 0xDE] = @64[RBP init + 0x30] + @64 [RBP_init + 0xDE]
@64 [RBP_init + 0x50] = { (@64[RBP_init + 0x30] *~ @64[RBP_init + OXDE] * ((@64[RBE ini:

@64[RBP_init + 0x74] = @64[C64([RBP_init + 0XDE]]

@64 [RBP_init + 0xF2] = @64[RBP_init + 0x38]

@64 [RBP_init + OxF2] = @64[RBP_init + 0x38] + 0Ox2C

@64 [RBP_init + 0x50] = {(@64[@64[RBP_init + 0x38] + 0x2C] ~ ((@64[@64[RBP_init + 0x =

Figure 32. Last few virtual instructions executed before mapping the virtual registers back to the native ones

As one can see in Figure 31 (IRDst = @64[RBP_init + 0x74]), the virtual register at offset 0x74
determines IRDst — the address of the next instruction. If we follow the virtual register @64[RBP_init
+ 0x74] in Figure 32, we can see that it appears to be preparing to execute the next virtual instruction
similarly to the second VM. Its code slice is the following series of expressions:

@64[RBP_init + 0x30]

@64[@64[RBP_init + 0x38] + 0x2C]

@64[RBP_init + 0x30] = @64[RBP_init + 0x30] + 0x2

@64[RBP_init + 0x30] = {@16[@64[RBP_init + 0x30]] 0 16, 0x0 16 64}


https://en.wikipedia.org/wiki/Program_slicing
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@32[RBP_init + 0x30]

@32[RBP_init + 0x30] + 0XB8E839329

@64[RBP_init + 0x30] = @64[RBP_init + 0x30] & OXFFFF

@64[RBP_init + 0x30]

@64[RBP_init + 0x30] << 0x3

@64[RBP_init + 0xDE] - EEEIGCEIRBENSHEENNNORSEINENORES]

@®64[RBP_init + OXDE]

@64[RBP_init + 0x30] + @64[RBP_init + OxXDE]

@64[RBP_init + 0x74]

@64[@64[RBP_init + OXDE]]

The entire slice of @64[RBP_init + 0x30] is meant just to acquire the offset of the next virtual
instruction (opcode): it gets the virtual instruction’s offset from the bytecode whose pointer is stored
inthe @64[@64[RBP_init + 0x38] + 0x2C] register, and the offset is subsequently increased by
0x%8E839329... which could have been omitted and serves solely to obscure the virtual instruction.

The virtual register GG 2PREDIIHTENTNOXSEIFNOREE] contains the address of the virtual

instruction table. Now it is clear that the first VM is obfuscated using known values from the bytecode
too and that the code indeed executes a next virtual instruction as well - it definitely uses Direct
Threading.

One can additionally see that @64[RBP_init + 0x50] stores the RFLAGS in Figure 32.

Behavior

The virtual instruction behaves similarly to the virtual instructions from the second VM - offsets of the
virtual registers to be used are fetched from the virtual instruction’s operands.

Subsequently a virtual register’'s value is moved to a memory address stored in another one: [<virt_
reg_1>] = <virt_reg_2>. The target register is then either increased or decreased by 8: <virt_
reg_ 1> = <virt_reg 1> +- 8. Thisis most likely a PUSH instruction prepared also for environments
where the stack grows upwards.

Initially executed virtual instructions

We will have a look at a few other virtual instructions to confirm our findings and the correctness of
methods for analysis of the first VM. Specifically, the virtual instructions that are initially executed as we
can compare the first VM's initial behavior to the second VM's.

The first executed virtual instruction

We can see in the highlighted line of Figure 33 that the first executed instruction of the first VM behaves
indeed just like the one in the second VM - it just zeroes out an internal register and prepares another
virtual instruction to be executed.



Under the hood of Wslink’s multilayered virtual machine

* = =

0x141] = RBP _init + 0Ox=98

+

BE4[RBP_init

@64 [RBP init + 0Ox=88] a4 [RBP init + 0Ox38]

+

@64[RBPE_init + 0xB8] = @G4[RBE init + 0x38] + 0x47

+

@64 [RBP_init

0x50] = {(@64[RBP_init + Ox3B] " ((@&4[RBF _init

@64 [RBP init + 0x98] 0xd

B64 [RBP init + 0x30] = @64 [RBP_init + 0x38]

@64 [RBP init + 0x50] {{@64[RBP_init + Ox38] ~ ((@64[RBP _init

@64 [RBP init + 0x=30] B&4 [RBP init + 0Ox38] + OxicC

@64 [RBP init + 0x30] = @64[E64[RBF init + 0Ox38] + Ox2C]

@64 [RBP init + 0x350] {(@E4[RBE_init + 0x30] ~ ((@&4[RBF _init

@64 [RBP init + 0x30] Be4 [RBE _init + 0x30] + 0Ox2

@l6[RBP init + 0x98] @16[B64[RBP init + 0x30]]

@64 [RBP init + 0x98] B64 [RBP init + 0Ox98] << Ox3

@64 [RBP init + 0x50] (864 [RBP init + 0x98] << 0x3)7 ({@64[REE

@64 [RBP init + 0xT74] 64 [RBE init + 0x38]

@64 [RBP init + 0OxT74] = @64[RBP init + 0x38] + O=xEE

@64 [RBP init + 0x50] { (@64 [RBP_init + Ox38] *~ ((GR4[RBP _init +

@64 [RBP init + 0OxF2] 64 [E64[RBPF _init + 0x38] + OxEE]

@64 [RBP init + OxF2] = @64 [RBF init + 0x38] + @64 [RBP_init + OxFZ

@64 [RBP init + 0x50] {{@64[RBP_init + Ox9B8] " @64[RBP init +

G64[RBP_init + Oxl2B] = B64[@E4[RBP_init + OxF2]]

@64 [RBP init + 0x30] = @64[RBP init + 0x38]

BE4[RBP_init + 0x50] = { (@E4[RBP_init + 0x38] ~ ((GE4[RBP init

@64 [RBP init + 0x30] @64 [RBF init + 0x38] + OxIC

B64[R64 [REBP init + 0x38] + 0x2C] = EB64[R64[RBP init + 0Ox38] + J=:

Figure 33. Zeroing out an internal register
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Statistics in Table 3 have been extracted from the processing of the first executed virtual instruction.

Size of the bytecode block in bytes 548
Total number of processed virtual instructions 62
Total number of underlying native instructions 9,444
Total number of resulting IR instructions (including IRDsts) 195
Execution time in seconds 6.4810

Table 3. Statistics of the first executed virtual instruction

The second executed virtual instruction

The second virtual instruction just zeroes out several internal registers, which are most likely about to
be used for obfuscation, as in the second VM.

Statistics in Table 4 have been extracted from the processing of the second executed virtual instruction.

Size of the bytecode block in bytes 755
Total number of processed virtual instructions 83
Total number of underlying native instructions 13,740
Total number of resulting IR instructions (including IRDsts) 259
Execution time in seconds 7.7718

Table 4. Statistics of the second executed virtual instruction

The third executed virtual instruction

The third virtual instruction behaves just like the third one of the second VM too - it stores the stack
pointer (highlighted in Figure 34). The addition of 0x98 is present due to applied optimizations which
took into account the previously executed POP instructions in the Intro section.
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@E4[REP _init + OxDE] = @E4[@G4[REP init + Ox38] + 0x2C]

@64 [REP_init + 0x50] {02 0 2, parity(@64[RBP_init + OxDE]

@64 [REP init + O0xAC] {@16[Q@64 [RBP_init + OxDE]] 0O 1&, 0x0 1& &4
@64 [REP init + O0xAC] = @64[RBP init + 0Ox38] + E@E4[RBP init + Oxic

@E4[RBP_init + 0x50] = [ (@G4[RBP_init + O0x38] ~ @64[REP init +

BG4 [@G4 [RBP init + OxAC]] = RSP init + 0x98

@E4[REP_init + 0x10D] = @G4[RBF_init + OxDE]

@64 [REP init + OxDE] = @64[RBP init + 0x10D]

@64 [REP init + 0xAC] 0x0
@64 [REBP init + 0xCl] = B64[RBP init + 0x38]

@E4[REP_init + 0xCl] = @64[RBP_init + 0x38] + 0x2C

@64 [REP init + 0x530] = {(B64[RBP_init + 0Ox38] "~ ((@E4[REP init =+
@64 [REP init + 0xCl] = @64[@64[RBP_init + 0x38] + 0=x2C]

@64 [REP_init + 0xCl] = @64[RBP _init + 0xCl] + 0Ox2

@64 [RBP_init + 0x50] = {(@64[RBP_init + 0xC1] ~ ((@E4[RBF init
@16[RBP_init + OxAC] = @1l6[@64[RBP_init + 0xCl1l]]

@64 [REP init + OxAC] = @64[RBP init + OxRAC] << 0Ox3

@64 [RBP_init + 0x50] = (@64[RBP_init + OxAC] << 0x3)? ({@64[REF_ini
@64 [REP_init + 0x74] = @64[REBP_init + 0x38]

@64 [REP_init + 0x74] = @64[RBP init + 0x38] + OxEE

@64 [REP init + 0x50] = {(B64[RBE_init + 0x38] "~ ((RE4[REF init

@64 [REP_init + 0x10D] = @64[8&4[RBP_init + 0x3B8] + OxEE]

@64 [REP_init + 0x10D] = @64[RBF_init + O0x&C] + @E4[REF_init +

@G4[RBP_init + 0x50] = [ (@G4[RBP_init + OxAC] ~ @64[REBP init + Ox

@64 [RBP init + 0x58] = @64[B64[REBP_init + 0x10D]]

@E4[REP_init + 0x105] = @G4[RBF_init + 0x38]

@E4[REP_init + 0x105] @64 [RBP_init + 0x3B] + Ox2ZC

@64 [@G64 [RBP_init + 0x38] + 0x2C] = @64 [E64[RBP_init + 0x38] + 0Ox2C] + Ox4

Figure 34. Storing the stack pointer in an internal register

Statistics in Table 5 have been extracted from the processing of the third executed virtual instruction.

Size of the bytecode block in bytes 586
Total number of processed virtual instructions 66
Total number of underlying native instructions 10,263

Total number of resulting IR instructions (including IRDsts) | 207

Execution time in seconds 6.8428

Table 5. Statistics of the third executed virtual instruction
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The fourth executed virtual instruction

We naturally expect this instruction to be a PoP as in the second VM; however, it is hard to confirm

statically as the already described obfuscation techniques make it too hard to understand. One can see
part of the virtual instruction in Figure 35.

Statistics in Table 6 have been extracted from the processing of the fourth executed virtual instruction.

Size of the bytecode block in bytes 4,883
Total number of processed virtual instructions 425
Total number of underlying native instructions 71192

Total number of resulting IR instructions (including IRDsts) | 1,038

Execution time in seconds 28.1638

Table 6. Statistics of the fourth executed virtual instruction

Figure 35. Part of the fourth virtual instruction

When we look closely at certain parts of Figure 35, it appears to be able to behave as a pop instruction.
The part of the virtual instruction in Figure 36 clearly behaves just like the fourth one of the second VM

— it moves a value off the top of the stack, and if the target register is different from the stack pointer,
the stack pointer is increased.

-

@8 [REBF_init] = 0Oxl

IRDst = (@64[RBP_init + 0x30] == (RBF_init + 0xl4l))?(loc_key 3¢
—// -
3641864 (REP init + 0x30]] = @64[RSP imit] . leekeys:e

@E4[@64 [RBP init + 0x30]] = @64[RSE init]
@64[RBP init + 0x141] = @64[RBE_init + 0x141] + 0x8 = -

IRDst = loc key 434
IRDst = loc_key 434 - 0=

Figure 36. Part of the fourth virtual instruction performing a pop-like operation
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Instruction merging

However, the instruction also seems to be capable of performing a PUSH and other operations as well,
based on the operands (Figure 37), which means that it consists of several other instructions merged

into one, which is a kind of obfuscation technique. It most likely merged several instructions with different
rolling keys into one.

P Y

@8 [REP_init] = Ox1 @S[RBP_init] = Ox0

BE4[RIF_init + OxFEEFFEEFEFECEEEF3] = BE64[RBF_init + 0x30] B1E6[RIF_init + OxFEFFECFEEEFEEFFE] = El&[REF_iniz + 0xZ0]

BE4[REP_init + Ox141] = @&4[REF_init + 0xl41] + OxFFFFFEEFFEFFFEEE BE4[REF_init + Oxldl] = @E4[RBP_init + Oxl141] + OxFEFFFEFFFEEFEEFFE

IRDst = loc_key 326 IRDst = loc_key 356

Figure 37. Part of the fourth virtual instruction performing a PUSH operation

AUTOMATING ANALYSIS OF THE FIRST VIRTUAL MACHINE

Now that we know what the internal structure of the first VM is like, we can process the VM as the
second one since analyzing all the virtual instructions would be complicated due to the additional
obfuscation techniques - we can again effectively eliminate them with symbolic execution.

We definitely need to concretize the virtual instruction table and internal registers dedicated for

obfuscation as in the previous one, which is not complicated. The question is: What do we do with the
second VM?

There is a pretty simple solution - instead of preserving the entire context of the second VM and
working with both at once, we can simply concretize the entire second VM as we know what memory
ranges belong to the VMs.

We will also ignore all memory assignments to the second VM's context and not preserve any

information about its structure. This will enable us to focus only on the first one and build the same
graph as before.

We could also preserve the obfuscated IR of all the virtual instructions of the first VM and use them
instead - it would save a significant amount of time during the processing since we would not

repeatedly disassemble, translate and deobfuscate the second VM for each opcode in the bytecode
blocks of the first VM. However, we want to show that it is possible to process both layers at once.


https://tigress.wtf/merge.html
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Processing the initial bytecode block

We processed the very first bytecode block as was described in the previous section. The resulting code
still appears to be too complex since we expected a series of POPs, the deobfuscated code and then a
series of PUsHes and finally mapping back to the native registers. However, there are additional, multiple
branches. One can see part of the code in Figure 38.

Ty ——
| abmpumrpotn = B = e st |
| s = e — S v 2y |

|
Iy miaia 12 n, i ar ok, aafain vl ab, miaden o 33, mipiere 3 0, G_atate o 1, Za3 K0 | & Omdyapuas ey B,m ke s = | tais = Cmay b pmeiacs = Sam|| 8 peniain v Gmaly b Caley 4 pemiain e Jmew; ® s imie  Semly - Smly Rk S 6, Sa3 L1, Cestals ® dmw § e tain

war * wlerluncd - . Alacrar_imin ~ Zmeivs - bloree_leis - dmaks © bl orer_isis - leess C leduedecd r
| . . 3 4l pome_tnin = Smmiy = pume_fain = Snad; % Seaimal

— - ! S w3l et e PO (PRI
Al rar_imin ~ Smal; = 0w i

e

ot

3 A T

il e ey e

e _ary_ds emann - sma_map_sids

| T _Jd-— hhm..m r

B e T
Ta: = Gmudapp{EDidag a3, capas_faia i1 s, wniain is ta. a1 e b, wn_iein o im. e ar o mafeia ol ol mie_faie nb 35, mupies 33 . b imin Tu L0, Ta3 33 81| 2 eadys an man oAl e it imrs = 1515 rmr el = Sater 4 man_lain @ Casim) b | e lain = Cemim 4 Seale o mer_iais = may - mmg

Figure 38. The first processed bytecode block
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Opaque predicates

Looking at the code more closely, we notice two types of expressions that can be further simplified.
The first is the value of RBP_init, which is the address of the virtual context and it is known (Figure 39).

@3Z2[RBP_init + 0x47] = 0x0

@64 [RBP_init + 0x1E] = RSP_init

IRDst = (RBF init == (xES)?(loc_key 164,loc key 163)

I | (e

Figure 39. Expressions that can be further simplified

Both paths that follow the initial block in Figure 39 contain the same code, hence this is not the same case
as with the PoP virtual instruction, where it was important to know what the target register was because
it determined the subsequent behavior of the virtual instruction. These checks are, on the other hand,
unimportant and we can just get rid of them - they can be considered as a sort of opaque predicate.

Note that the branch of the pop virtual instruction was now optimized out automatically since offsets of
the registers were present in the bytecode and directly known.

Finally, these were the last obfuscation techniques, and we can look at the simplified code.

Overview

We are finally greeted with a familiar, even pleasant, view in Figure 40 - as expected the code begins
with a series of PoPs (red) and ends with a series of PUsHes (green) that represent parts of the context
switches.

Another interesting detail is that the VM uses a special internal register to store the destination address
- the final jump is not visible, but the code jumps to @64[RBP_init + 0x133]. As was mentioned
earlier, the VM also stores the base address of its code section; this is stored in virtual register @64 [ RBP__
init + 0x80] in our case.

One can see that the code in Figure 40 also accesses certain data using the base address, specifically
at offset 0x0E3808 (blue). After looking up the address, we found that it belongs to a Servicestatus
structure (Figure 41).


https://tigress.wtf/addOpaque.html
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EE4[BBF_init
EE4[BBF_init

EE4[BBF_init
EE4[BBF_init

EE4EER init
EE4EER init

EE4[RBF_init
EE4[RBF_init

BE4[RBF_init
BE4[RBE_init

@32 [BBE_init
E3E [BBF_init

@64 [EBE_init
EE4[EBE_init
BE4[BER init
EE4 EER inzt

+

+

+

+
+

+

+

+

+

IAD=t = loc_key 281

0x1Z] = R3P_imit = OxT0
0x1E] = EE4[R3AP_imit]

0x11E] = EE2[R3P_imit]
0x1EZ] = R3P_imit = OxTE

0x4F] = GE4(RIP_init]
0x1Z] = R3E_imit + 0xE0

0xC] = EE2[R3P_init]
0x1E] = R3E amit + OxEE

0x1E] = R3F_imit + OxBE
0x13F] = EE4[3€4[BEF_init + Ox13F]]

0x53] = 0xl
0x4F] = dxlC

0x133] = 0w2082
0x132] = BE4[BEE_init + OmE0]) + 0x2082
0x132] = BE4[EEE_init + 0xE0] + 0xE2308

0x74] = FE4(EER init + 0x30] - IxE2803

x1 € 7, (BE4[RBE_init + 0x4F] + OxETTEEEEFFEFEETEE) [€3:64]1 7 &, @32[BET_iniv + DxCCI[E:11]1 B 11, {[@E4[EBT_init + 0x4F] ~ (@E4[RBF_init + Ox4F] + OxFETFEEEE

20, vip irie 20 21, i d dnie 21 22, Owl 22 32} & Ouwd0, {0xZ 0 2, pariey(§32[REF init + Ox0C] & OxdD) 2 2, O 2 8, of inie 8 O, i £ imie U 10, df imie 10 11,

!

BE4 [ABE_init + Oxl3a]

BE4[ABE_imit + Oxl33]

BE4[AEE_init + Ox11F]
BE4[AEE_init + Ox122]
BE4[ASE_init + Ox122]

BE4[RSE_init & Ox122)

BE4[ABE_imiv + Uxlid] = O=30R2

EE4 [RBP_imnit + Oxl5] = EE4 [REP_init + 0xE0] + DxZFBO

B&4 [A3F_anit + OxEETFFEEEETFFEEETA] = BE4[REF_init + 0x4F]
BE4 [ABE_init + Ox1E] = EE4[RSF_init + IxlE] + CxIFEEEETTFEEITEEE

BE4[REP_init + 0xBO0] + O0x30R2Z

BE4[AEF_init + OxBO0] + OxZFBO

@64 [REE_init + 0x12F]
0x302E
@E4[RED_init + 0xE0] + 0x20ZE

BE4[AEI_init + [xE0] + 0x3CD2E

Figure 40. Code of the processed bytecode

.data: 000087 FEEBSFF3888 ; struct SERVICE STATUS ServiceStatus
.data:@eeee7FEBSFFELLL ServiceStatus SERVICE_STATUS <@>
.data:Pe0007FEBSFF3808

Figure 41. Data accessed by the code - ServiceStatus
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It additionally sets a register before recovering the native state to a data address at offset 0x2FB0O
(yellow). The address contains a non-obfuscated function shown in Figure 42.

. text:8800807FEESF12FEE

. text:880007FEB5F12FB0

-text:PBBATFEBSFIL sub_7FEB5F12FB@ proc near
. text:880807FEBSF12FE0

.text:ee8887FEESF12FES var_8= qword ptr -8

. text:8800807FEB5F12FE0

.text:88@087FEBSF12FE@ 800 sub rsp, 28h
.text:ee0007FEESF12FE4 828 cmp e,
.text:@8@@087FEBSF12FB7 828 jnz loc_7FEB5F13065

li' |

I
-text:000607FEBSF12FBD 828 mov rcx, csrhServiceStatus ; hServiceStatus

.text:6006807FEBSF12FC4 828 inc cs:ServiceStatus. dwCheckPoint
PIZE

text:eeee87FEBSF12FCA

text:eeeed7FEBSF12FCA loc_7FEBS5F12FCA:

.text:@@8@@7FEBSF12FCA 228 mov [rsp+28h+var_8], rbx

.text:0@0087FEBSF12FCF @28 lea rdx, ServiceStatus ; lpServiceStatus
.text:090087FEBSF12FD6 828 xor ebx, ebx

.text:0088687FEBSF12FDE 828 mov cs:ServiceStatus.dwCurrentState, 3
.text:@@0@07FEBSF12FE2 @28 mov gword ptr cs:ServiceStatus.dwControlsAccepted, 1
.text:900007FEBSF12FED 828 mov cs:ServiceStatus.dwhaitHint, ebx
.text:008007FEBSF12FF3 828 call cs:SetServiceStatus

+tavt - ARARATEFREF12FFG AR rmn re+dwnrd 7FFREFF3708 7

Figure 42. Function whose pointer is used in the code

Let us now focus on the destination address (gray) — it is set to <base address> + 0x8C038. Looking
up that address in the sample, we see it belongs to the Windows APl RegisterServiceCtrlHandlerW,
which makes sense as the application is a service (Figure 43).

.idata:@0eea7FEBSFOCA3E 3 SERVICE_STATUS _HANDLE _ stdcall RegisterServiceCtrlH
.idata:eeeea7FERSFYLiEL RegisterServiceCtrlHandlerW dgq offset advapi32 Registe
.idata:@ePee7FEBSFOCA48 db @, @, @, @, 0, @, @, O

Figure 43. Destination address of the bytecode

The question is now, what is the return address of the API call. When we look at the end of the code, we
see that it sets the return address - the highlighted assighment in Figure 44 appears to be ox8s bytes
above the stack pointer, but we need to keep in mind that we started below the stack pointer because
we did not perform the initial context pushing from vm_init () and in reality, it is the return address.

The return address is set to another vm_pre_init().

@64 [RSF init + 0xB88] = E64[RBP init + O0xB0] + Ox21EASLC

E3Z[RBF _init + 0x127] = 0x0

RRX.0 = @64[RSP_init + 0x70]

RSP.0 = RSP _init + 0x88

exception flags = @32[RSP _init + 0x78][8:9]172(0x2,exception flags init)
IRDst = @64 [@64[RBP _init + 0x133]]

Figure 44. Setting return address of the API call

The last part of the code that needs to be analyzed is the body of the loop (Figure 45). It is pretty simple
- it zeroes out a memory range. If we look back at Figure 40 and look up what is in @64[RBP_init +
0x747], we see that it is set to the address of the servicesStatus structure (blue) - this piece of code
zeroes out the structure. Meanwhile, @64[RBP_init + 0x4F] (pink in Figure 40) initially contains the
constant ox1c - size of the structure — and @64[RBP_init + o0xcCcC], the CPU flags.
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(I
@64 [RBP _init + Oxcc] = {@32[RBP init + Oxcc][0:1] 0 1, 0Oxl 1 2, parit
@ed [RBP_init + 0x4F] = @64 [RBP_init + 0x4F] + OXFFFFFFFFEFFFFFEFF

@64 [RBP_init + 0x133] = @64 [RBF_init + Ox4F]

@64 [RBP_init + 0x133] = @64 [RBP init + Ox4F] + @64 [RBP init + 0x74]

@5 [@&4 [RBP_init + Ox4F] + @64 [REP init + 0x74]] = 0=x0

IRDst = ((@32[RBE_init + OxCC] & 0x40)?({0x2 0 2, paritvy(@32[RBP_init

Figure 45. Body of the code’s loop

Now we look at the discovered non-obfuscated sample and compare it against our findings. We can
confirm that we deobfuscated the first bytecode block successfully (Figure 46).

public SerwviceMain
serviceMain proc near

arg_@= qword ptr B8
arg_8= qword ptr 18h

} 48 B9 5C 24 18 mov [rsp+l8h], rbx

157 push rdi

i 48 B3 EC 28 sub rsp, 2@h

i 48 BB 1A mov rbx, [rdx]

i B8 1C &9 ab a8 mov eax, 28

3 48 BD 3D AF @7 BE 88 lea rdi, ServiceStatus

} BF 1F 30 @0 99 /0 B8 nop dword ptr [rax+2e8e882ah]

vy

loc_158683868:

128 48 FF (B dec rax
128 Cb 84 38 @0 maw byte ptr [rax+rdi], @
128 75 F7 jnz short loc_lB@eazece
F
8D 15 1@ FF FF FF lea rdx, HandlerProc ; lpHandlerProc
8B CB mov rcx, rbx 3 lpServiceName
15 BF BF @B @8 call cs:RegisterServiceCtrlHandlerw
29 ©5 B@ @7 BE 80 mov cs:hServiceStatus, rax
85 €@ test rax, rax
7B jz short loc_l888838FD
] 1
v

Figure 46. The same part of code in the non-obfuscated binary

Statistics in Table 7 have been extracted from the processing of the first bytecode block.

Size of the bytecode block in bytes 695
Total number of processed virtual instructions 62
Total number of underlying native instructions 3,536,427

Total number of resulting IR instructions (including IRDsts) | 192

Execution time in seconds 382.5678

Table 7. Statistics of the first processed bytecode block
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DESCRIPTION OF OUR FINAL VM ANALYZER CODE

Our final analyzer code consists of several classes that interact together, as described in the following
sections. The full code listing is available in our GitHub repository. The classes follow the high-level
descriptions from the previous Automating analysis sections.

Class Wslink

Wslink is a mediator that handles interaction of the remaining classes, its constructor processes the
supplied memory dump, and its method process () accepts the value of the virtual program counter
— pointer to the bytecode - with the opcode of the initial instruction. The bytecode is subsequently
processed using classes VirtualContext, SymbolicCFG and MySymbolicExecutionEngine; the
resulting control flow graph is written into a DOT file vma.dot.

Parts of the VM, such as address of the instruction table or offsets of the virtual registers for
obfuscation, should be overwritten to provide specific values for individual VMs.

Class VirtualContext

This class represents the virtual context — it contains most notably the initial values of the virtual
registers for obfuscation, virtual program counter, and the address of the instruction table.

It also provides several methods for working with the context described in the following sections.

Method get_next_instr()

The method get_next_instr () applies the address of the instruction table to the destination address
to simplify the corresponding expression and attempts to unambiguously determine the address of the
next virtual instruction to be executed.

Method get_irb_symbs()
This method simply acquires the expressions that should be preserved in the nodes of the resulting
control flow graph.

Method get_updated_internal_context()

The method get_updated_internal_ context() updates values of the internal registers that need
to be preserved between virtual instructions, such as the virtual program counter or the obfuscation
registers.

Method get_state_hash()

This method calculates a hash for virtual instructions — the hash is used to specify the actual position
in the bytecode to reconstruct the control flow graph without duplicate nodes or paths and to avoid
infinite loops in cycles. It is calculated just from the virtual program counter.

Class MySymbolicExecutionEngine

This class overrides the method mem_read() of Miasm's class SymbolicExecutionEngine primarily
to transform memory accesses relative to the virtual program counter and the virtual instruction table
into concrete values. It is additionally meant to make the second VM completely concrete when we are
processing the first one.


https://github.com/eset/wslink-vm-analyzer
https://graphviz.org/doc/info/lang.html
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Class SymbolicCFG

This class is meant to construct the resulting control flow graph. It uses class Node to process individual
virtual instructions, to acquire the expressions that need to be preserved, and to determine addresses of
the next virtual instructions.

Each Node is tied to a hash generated by get_state_hash() (as described above) and the address,
StateID, of the block of code that is being processed. This means that virtual instructions containing
unbounded loops cannot currently be processed correctly because when we connect a state to an
already processed one, it will not take into account the changes introduced in the body of the loop.

Class Node

This class simply represents a node in the resulting control flow graph - it most notably contains the
values of the obfuscation registers and virtual program counter that are together called init_symbols.
These are the values required to determine the addresses of the next virtual instructions.

It provides a method process_addr () that can get the following Nodes classes that have not yet
been processed and return them along with the expressions that should be preserved in a data-class
ContextResult.

The new Nodes are created based on the supplied addresses using method _get_next (), which
accepts several arguments. The arguments can instruct the function to slightly modify the resulting
Node — make a copy of the actual symbolic state when there is a branch, or update init_symbols for a
new virtual instruction.

FUTURE WORK

Once we discovered a non-obfuscated sample, we were not motivated to completely deobfuscate the
rest of the code.

Our next steps would consist of:

1. Getting rid of the intro and outro and mapping the virtual registers directly to the native ones.

2. Automatically processing the subsequent bytecode blocks and extending the graph with resulting code
listings to get an overview of the whole function.

3. Optionally addressing individual instructions with unbounded loops that cannot be fully processed using
symbolic execution (e.g., instructions like DEC_RC4 mentioned in Miasm'’s blog) and manually creating
their IR to be added to the graph. We could also experiment with some enhancements of symbolic
execution that attempt to mitigate the issue.

4. Optionally matching resulting IR expressions against known IR expressions of assembly instructions to
recover assembly code.


https://miasm.re/blog/2016/09/03/zeusvm_analysis.html
https://is.muni.cz/th/t52nv/trtik_phdThesis.pdf
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CONCLUSION

We have described internals of an advanced multilayered virtual machine featured in Wslink and
successfully designed and implemented a semiautomatic solution capable of significantly facilitating
analysis of the program'’s code. This virtual machine introduced several other obfuscation techniques
such as junk code, encoding of virtual operands, duplication of virtual opcodes, opaque predicates,
merging of virtual instructions and a nested virtual machine to further obstruct reverse engineering of
the code that it protects, yet we successfully overcame them all.

To deal with the obfuscation we modified a known technique that extracts the semantics of the virtual
opcodes using symbolic execution with simplifying rules. Additionally, we made concrete the internal
virtual registers for obfuscation along with memory accesses relative to the virtual program counter

to automatically apply known values and deobfuscate semantics of the virtual instructions — this
additionally broke down boundaries between individual virtual instructions. Boundaries are necessary to
prevent path explosion of the symbolic execution; we would lose track of the virtual program counter -
our position in the interpreted code — without them.

We defined new boundaries by symbolizing the address of the virtual instruction table, since it is
required to get the next instruction, and concretized it only when we needed to move to the following
virtual instructions. We subsequently constructed a control flow graph of the original code in an
intermediate representation from one of the bytecode blocks based on the virtual program counter, and
extracted deobfuscated semantics of individual virtual instructions. We finally extended the approach to
process both virtual machines at once by entirely concretizing the nested one.
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