
What do a banking Trojan,
Chrome and a government
mail server have in common?
Analysis of a piece of Brazilian malware

What do a banking Trojan, Chrome
and a government mail server have in common?

Introduction
Malware has evolved and its most common present purpose is

to steal the victim's data as surreptitiously as possible, becoming

less and less noticeable to users with infected computers. In this

paper, we have identified a threat that uses a combination of spam

tactics for its propagation, browsers for transmitting its malicious

instructions (same technique presented on previous research as

Win32/Theola), and a legitimate server for the collection of stolen

information.

A few weeks ago, ESET Latin America's Research Lab received

an interesting sample. This malicious code drew the attention of our

researchers because it was spreading through spam and because it

had a very particular characteristic: it used a Brazilian government

server to collect the victim's stolen information.

We have previously highlighted the use of legitimate web servers as

a growing current trend, for the purpose of hosting malware. In this

case, the malicious code uses a server without having to infect it,

since the server lacks the adequate controls to prevent its being

misused by a third party. Consequently, the cybercriminal seeks

anonymity and tries to have access to all the possible functions

provided by legitimate servers in order to dispel any kind of suspicion,

given the good reputation of the server.

This report is the outcome of the investigation carried out on this

threat. In the following pages, you will be able to learn all the

Contents
Introduction . 2

Installation: Social engineering and dropper 3

Executable file . 3

Tempo_Tick Method . 4

GetResourceFile Method . 6

Malicious Chrome extension . 6

Manifest.json: plugin permissions 7

Service.js: the beginning of the payload 8

beforeNavigate method . 9

navigationCompleted method 10

User information theft . . 10

Compromised Brazilian server . 12

Reports . 14

Conclusion . 14

Appendix: Analyzed malware . 14

Author:
Fernando Catoira – Security Analyst for ESET Latin America

Co-Authors:
Pablo Ramos – Security Researcher for ESET Latin America
Sebastian Bortnik – �Educations & Research Manager

for ESET Latin America

http://www.welivesecurity.com/2013/03/13/how-theola-malware-uses-a-chrome-plugin-for-banking-fraud/
http://www.eset-la.com/centro-amenazas/articulo/Tendencias-2013-Vertiginoso-crecimiento-malware--moviles/2863
http://www.eset-la.com/centro-amenazas/articulo/Tendencias-2013-Vertiginoso-crecimiento-malware--moviles/2863

What do a banking Trojan, Chrome
and a government mail server have in common?

information we have gathered throughout our analysis, as well as

a second interesting characteristic we observed: The threat uses

browser extensions as its execution method; another trend that we

will start to see more frequently in malicious code.

Among many others, the questions of how the threat is installed,

which browsers it affects, and how it is capable of using

a government server for its execution will all be answered in the

following pages, with a detailed analysis of each of the threat

components.

Installation: Social engineering
and dropper
The malware propagates itself through an executable using Social

Engineering techniques in order to affect as many users as possible.

That executable is a dropper, i.e., a file that installs ("drops") other files

into the system so that the malware can reach its full operational

capabilities. The file received by the ESET Latin America's Research

Lab, whose name is "MulheresPerdidas.exe", was developed in.NET, the

popular Microsoft development framework. In order to analyze the

threat, a disassembling process was carried out to find out what it

does.

Executable file
While the executable is loading, the code corresponding to the load

event (Load) is executed. This process ascertains the administrator

rights under which it is running. In the event that it is actually running

under the maximum system privileges, a check is performed to verify

that the operating system is Microsoft Windows Vista or higher (this

must be verified for the framework to be able to run). The system

infection is only carried out if both conditions are met. In order to

elevate the system privileges, the malicious code uses the "runas"

command.

Figure 1 – Source code of the executable

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680046%28v=vs.85%29.aspx

What do a banking Trojan, Chrome
and a government mail server have in common?

Moreover, if there is no copy of the malware in the user’s temporary

folder, it copies itself there under the name svmb60.exe.

At the same time, within the binary we found diverse programming

methods that perform specific tasks. These methods will be dealt

with in detail in the following sections, where we will explain their

individual functions.

Tempo_Tick Method
This method is responsible for modifying various registry keys to

allow the successful execution of the malicious code, as well as for

disabling operating system protections and error checkups so that

the malware can run smoothly.

In the registry, it enters a new entry corresponding to a new DLL

named Vaio.dll (VAIO is Sony’s computers brand), another social

engineering technique to stay unnoticed by pretending to be

a legitimate code library. The malware also uses names that

correspond to other products or brands to mislead the victim.

Specifically, there are files named Skype or Microsoft, among others.

Finally, it copies all the files that provide the diverse functions of

the malware into the Google folder, within the system's temporary

folder, after having validated the existence of the entry corresponding

to Google Chrome in "AppPaths".

Figure 2 – Temporary folder content

http://en.wikipedia.org/wiki/Method_(computer_science)
http://en.wikipedia.org/wiki/Method_(computer_science)

What do a banking Trojan, Chrome
and a government mail server have in common?

Another important fact is the creation of an entry for the execution

of the threat at system restart. Basically, after restarting the system,

the Google Chrome extensions that will be used to steal the victim's

information are installed. An interesting earlier instance of the misuse of

Chrome was described by ESET’s Aleksandr Matrosov earlier this year:

Win32/Theola.F is a malicious Google Chrome plugin.

The image below shows the registry entry corresponding to

the malicious extension in the Google folder:

If the file is run again when there is already an instance of it in

memory, a window is displayed deceiving the victim into believing

that there is an error in the WinZip extractor.

Figure 3 – App Paths registry entry

Figure 4 – Windows registry entry

Figure 5 – Fake WinZip error window

http://www.welivesecurity.com/2013/03/13/how-theola-malware-uses-a-chrome-plugin-for-banking-fraud/

What do a banking Trojan, Chrome
and a government mail server have in common?

In the analysis of the disassembled code, notice the use of

the "Interaction.MsgBox(prompt, critical, title)" method to build the

fake error message in WinZip 7.0, as well as the fact that, regardless

of whether the process is executed for the first or second time, it will

always display an error message to make the user believe the program

is corrupt:

GetResourceFile Method
Another of the malware's main functions is provided by

the GetResourceFile method, which has a fundamental role for

the operation of the threat.

This method is responsible for copying a series of files to the disk,

which will be used at a later instance to enable the malware to

run properly. Such files are located within the binary that infects

the system as if it were one of its own resources. The routine is in

charge of writing them to the disk before the information-gathering

stage can begin. The files, which are stored in the "C:\Windows\

system32\Google\" folder, are the following: CtrlTab.js, Jquery-

1.6.2.min.‌js, Manifest.json, Microsoft.js, Service.hml, Service.js, Skype.js

and Chrome.‌png.

This function is used throughout the whole process to extract the

different malware resources.

Malicious Chrome extension
As mentioned above, the malware installs a Chrome extension onto

the infected system. The files are copied to the system folder; most of

them are JavaScript files, which will be explained in detail below.

Figure 6 – Source code showing the error message

Figure 7 – Malware resources

What do a banking Trojan, Chrome
and a government mail server have in common?

These files in combination are the ones responsible for executing

the threat's malicious instructions. ESET solutions detect their most

important components as malicious files:

File Detection

Microsoft.js JS/Spy.banker.G

Service.js JS/Spy.banker.G

Skype.js JS/Spy.banker.G

Each of the files has a specific and unique function enabling the
threat to operate within the system. All the Chrome extensions
have a structure that needs to be studied by developers for its
proper operation. That is why the Manifest.json file is of such
importance within the context of the malware execution, and it is
crucial to understand how it works so that the threat can be fully

comprehended.

Manifest.json: plugin permissions
The Manifest.json file establishes the resources that will be used by
the plugin. The file is in the JSON format, which is similar to XML, but
with fewer overheads. This file type must be present in the Google
Chrome extensions or plugins. In this context, the JSON file contains a
table with all the extension's properties, permissions and elements.

Figure 8 – Google folder content

Figure 9 – Manifest.json file content

http://developer.chrome.com/extensions/getstarted.htm
http://developer.chrome.com/extensions/getstarted.htm

What do a banking Trojan, Chrome
and a government mail server have in common?

When analyzing the file, you may notice that it requires particular

permissions to grant access to all the information and websites

the potential victim may visit. Specifically, in the "permissions"

section, it can be seen that, through the use of regular expressions,

it requires access to HTTP, HTTPS, webNavigation and webRequest

requests. In other words, these types of request will be intercepted by

the malware plugin.

On the other side, each time the Google Chrome browser is

opened, it runs "service.html" in the background. This HTML file

loads two malicious JS (JavaScritpt) files, which are "CtrlTab.js" and

"Service.‌js". In order for the aforementioned scripts to be executed

in the background, they need to be stated in the Manifest.json file

properties.

At the same time, both JavaScript files are included in the "content_

scripts" attribute of the manifest.json file. In this way, their execution

in all the browser tabs is ensured. In the same manner, by setting the

"matches" property to the "<all_urls>" value, they will be run on all the

websites the victim visits.

Among the permissions, there are various regular expressions with

different functions:

• � “http://*/*”-“https://*/*” -“*://*/*”

These establish that the Google Chrome extension will have

read access to all the traffic in the infected system that is

accessed through the browser.

• � “tabs”

This allows the malware to perform any operation with the

browser tabs, such as creating a tab or modifying it, among

other possibilities.

• � “webNavitagion” - “webRequest”

They are used by the Service.js file to run the malicious payload

and thus steal the victim's information.

Service.js: the beginning of the payload
The service.js file contains the main module for the malware

operation. Specifically, it establishes the main process flow through

the execution of different events. The most critical section defines

four different actions that are executed when the victim starts and

finishes a webRequest request. At the same time, it also executes

events while the victim is surfing the web (webNavigation).

Figure 10 – HTML code of the background web page

http://developer.chrome.com/extensions/background_pages.html

What do a banking Trojan, Chrome
and a government mail server have in common?

As can be seen in the screenshot, there are four events related to the

webRequest and webNavigation modules. The Chrome.webRequest.

onBeforeRequest.addListener(registerRequest,urlFilter) event will be

executed when the victim makes a request for a website. At the same

time, before an URL request, the registerRequest method is executed:

this is located in CtrlTab.js.

This method retrieves a list of the URL addresses which were visited

by the victim using any of the Google Chrome tabs.

The following event, Chrome.webRequest.onCompleted.
addListener(requestCompleted,urlFilter,[“responseHeaders”]), will be
executed once the request is completed. Moreover, it invokes the
requestCompleted method itself in CtrlTab.js, gathers information on
the tab being used by the user, and calculates the totalResponseTime.
The last two methods correspond to the webNavigation module.
They invoke two respective processes: one before the victim surfs the
website and the other after the victim has finished surfing, using the
beforeNavigate and navigationCompleted routines.

beforeNavigate method
When the malware is run for the first time, a cookie is created with
the name "FirstRun" and subsequently we can see the access to an
URL address in a Brazilian government domain. When analyzing the URL
parameters in detail, we can see that an email is sent to this address:
instacar@ymail.com:

Figure 11 – Service.js file content

Figure 12 – requestCompleted method

Figure 13 – beforeNavigate method

What do a banking Trojan, Chrome
and a government mail server have in common?

The objective of this section is to allow the attacker to know when
a new victim appears, thus allowing him to estimate the number
of infected computers. In the following sections, we will discuss in
greater detail how and why this government server is used to send
the messages.

navigationCompleted method
This method marks the beginning of the actual data theft. First of
all, it performs a check to establish whether the victim accesses any
financial or banking institutions.

If this is the case, a "myTimer" function is activated with an interval of
1000 milliseconds for each execution.

If the user enters one banking institution in particular (corresponding

to one of the major banks in Brazil), the function runs the Skype.‌js

script. If he enters the other bank instead (another important

Brazilian banking institution), it runs the Microsoft.js script.

User information theft
To continue with the analysis of the JavaScript files responsible for

stealing the victim's banking information, it is possible to identify the

way in which the data is gathered, such as the bank account numbers

and the cash card numbers. The attackers behind this threat steal

credentials and use cookies to store them. In the following piece of

code, we can see how this task is carried out:

Figure 14 – navigationCompleted method

Figure 15 – myTimer function

Figure 16 – Piece of code corresponding to the manipulation of cookies

What do a banking Trojan, Chrome
and a government mail server have in common?

Initially, it steals data such as the victim’s ID number on the CPF

(Cadastro De Pessoas Físicas, the register of persons in Brazil),

the passwords (Senha), and the 4-digit validation number or

PIN of the cash card and the account number. Afterwards,

all that information is sent to another Yahoo email address:

informativoaurelio@ymail.com.

Moreover, apart from the information that is delivered straight away

to the cybercriminal, some data are directly stolen by injected HTML

code (which is obfuscated):

After the code has been processed, it is possible to view it in a more

readable manner, as shown in the following HTML file:

In this screenshot we can clearly see how both the Senha04 and

the Senha07 are being captured. This code is only injected when

certain banking institutions are in use.

Figure 17 – Hexadecimal HTML code
Figure 18 – ASCII HTML code

http://en.wikipedia.org/wiki/Cadastro_de_Pessoas_F%C3%ADsicas

What do a banking Trojan, Chrome
and a government mail server have in common?

Compromised Brazilian server
After discovering that the malware used a script hosted on

a website, we proceeded to examine the compromised govermental

server with the aim of trying to gather more information on why

the attacker would want to use such a strange method to submit

the stolen data. According to the information gathered, it is likely

that the cybercriminal has found the ASP script used by the banking

institution itself through a search engine. There is a public form on

the web page that uses this script to send information to different

email accounts. When analyzing the source code of the webpage that

contains such a form, it is possible to find the ASP script in question.

If we take a look at the code of the website, the form sends a request

to the aforementioned ASP file.

The request is of the GET type, and different parameters are used,

which were previously established when the form was filled in:

•  “emailpara”: The email address where the email will be sent to.

•  “titulo”: Message subject.

•  “conteudo”: Message body.

Moreover, if the HTML code is examined more closely, we can see

that the parameters have the "hidden" attribute applied. These

parameters could be used to send information by the attacker

regarding other aspects, since they are also part of the GET request.

Evidently, the cybercriminal has found this functionality on

the government server and was able to exploit it with the purpose

of remaining anonymous while carrying out his illegitimate

transactions. The problem lies in the lack of any kind of validation on Figure 19 – HTML code of the web form

Figure 20 – Web request to send the email through the government server

What do a banking Trojan, Chrome
and a government mail server have in common?

the part of the server, thus making it possible to send an email from

the legitimate server (through a simple HTTP access), as was done by

the malware:

The email always comes from the governmental entity domain and

from the same email address. The analysis of the emails' header

confirms that the malware is actually using the legitimate server,

and not forging the header:

The presence of the "from" field corroborates that it actually is

the bank's server. Likewise, the IP address of the server corresponds

to Brazil:

Figure 21 – Reception of an email sent through the government server

Figure 22 – Header code of an email sent from the government server Figure 23 – IP address information regarding the Brazilian government server

What do a banking Trojan, Chrome
and a government mail server have in common?

Reports
In early May, ESET Latin America has reported this incident both to
Yahoo and to the Brazilian CERT, informing them of the details of the
threat.

The two email accounts used by the attacker have already been
closed on May 10th, so that the analyzed variants are no longer
operational for the attacker.

Moreover, the Brazilian CERT team has worked on the reported
incident and has fixed the vulnerability that allowed the attacker to
send emails from the server, at the end of June.

The threat that was analyzed and described in this paper is no longer
operational, as a result of the joint work of the ESET Latin America

Research Team and the aforementioned entities.

Conclusion
Once more we find ourselves faced with a piece of malware that
confirms the clear interest of its developers in stealing users' data,
and the prevalence of banking Trojans in the Brazilian region.
Two characteristics are particularly noticeable: the use of browser
extensions for data theft and the submission of information through a
government mail server.

The fact that it uses a Chrome extension for data theft has a direct
impact on the victim, since in this case it is no longer the operating
system that is being infected, but the browser itself. In addition, the
malware uses different languages in order to perform all its malicious
activities. This combination of languages – HTML, JavaScript and .NET

– in the case of the executable shows that the structural complexity
of the malware. With such heterogeneity, the developer can take
advantage of the features of each language used.

Apart from the diversity in the development of the code, we
must note the distinctive characteristic of the use of a Brazilian
government server to submit information. This provides greater
anonymity to the attacker, given the fact that he uses a legitimate
server to transmit the information he has stolen from the victims.

This kind of research confirms that cybercriminals are constantly on
the move, looking for new ways to infect as many users as possible
through the modification of their techniques. The advent of new
infection methods through exploits that affect browsers – as is
the case here – and the use of malicious plugins confirm the new
malware approach, consistent with the trends we have already been
covering for a while: How Theola malware uses a Chrome plugin for

banking fraud.

Appendix: Analyzed malware
Here is a list of MD5 hashes of every file that was analyzed during this

research:

File MD5 hash

MulheresPerdidas.exe f7d63175ff8b4959c425ad945e8e596e

Microsoft.js 6a944a7da3fc21b78f1a942ba96042a0

Service.js 6c1daaccd036cd602423f92af32cdc14

Skype.js 28174674f60ce4d3fb1ac8a74686b3ca

Vaio.dll c9e20bdec9264bbb6de34c5dd7be0c79

Table 2 - MD5 hash of analyzed samples

	Introduction
	Installation: Social engineering
and dropper
	Executable file
	Tempo_Tick Method
	GetResourceFile Method

	Malicious Chrome extension
	Manifest.json: plugin permissions
	Service.js: the beginning of the payload
	beforeNavigate method
	navigationCompleted method
	User information theft

	Compromised Brazilian server
	Reports
	Conclusion
	Appendix: Analyzed malware

